A general differentiation theorem for superadditive processes
Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 125-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let L be a Banach lattice of real-valued measurable functions on a σ-finite measure space and T={$T_t$: t 0} be a strongly continuous semigroup of positive linear operators on the Banach lattice L. Under some suitable norm conditions on L we prove a general differentiation theorem for superadditive processes in L with respect to the semigroup T.
DOI : 10.4064/cm-83-1-125-136
Keywords: differentiation theorem, superadditive process, absolutely continuous norm, local ergodic theorem, semigroup of positive linear operators, Banach lattice of functions

Ryotaro Sato 1

1
@article{10_4064_cm_83_1_125_136,
     author = {Ryotaro Sato},
     title = {A general differentiation theorem for superadditive processes},
     journal = {Colloquium Mathematicum},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-83-1-125-136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-125-136/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - A general differentiation theorem for superadditive processes
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 125
EP  - 136
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-125-136/
DO  - 10.4064/cm-83-1-125-136
LA  - en
ID  - 10_4064_cm_83_1_125_136
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T A general differentiation theorem for superadditive processes
%J Colloquium Mathematicum
%D 2000
%P 125-136
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-125-136/
%R 10.4064/cm-83-1-125-136
%G en
%F 10_4064_cm_83_1_125_136
Ryotaro Sato. A general differentiation theorem for superadditive processes. Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 125-136. doi : 10.4064/cm-83-1-125-136. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-125-136/

Cité par Sources :