A general differentiation theorem for superadditive processes
Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 125-136
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let L be a Banach lattice of real-valued measurable functions on a σ-finite measure space and T={$T_t$: t 0} be a strongly continuous semigroup of positive linear operators on the Banach lattice L. Under some suitable norm conditions on L we prove a general differentiation theorem for superadditive processes in L with respect to the semigroup T.
Keywords:
differentiation theorem, superadditive process, absolutely continuous norm, local ergodic theorem, semigroup of positive linear operators, Banach lattice of functions
Affiliations des auteurs :
Ryotaro Sato 1
@article{10_4064_cm_83_1_125_136,
author = {Ryotaro Sato},
title = {A general differentiation theorem for superadditive processes},
journal = {Colloquium Mathematicum},
pages = {125--136},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2000},
doi = {10.4064/cm-83-1-125-136},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-125-136/}
}
TY - JOUR AU - Ryotaro Sato TI - A general differentiation theorem for superadditive processes JO - Colloquium Mathematicum PY - 2000 SP - 125 EP - 136 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-125-136/ DO - 10.4064/cm-83-1-125-136 LA - en ID - 10_4064_cm_83_1_125_136 ER -
Ryotaro Sato. A general differentiation theorem for superadditive processes. Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 125-136. doi: 10.4064/cm-83-1-125-136
Cité par Sources :