Complexity of the class of Peano functions
Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 101-105

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.
DOI : 10.4064/cm-83-1-101-105

K. Omiljanowski 1 ; S. Solecki 1 ; J. Zielinski 1

1
@article{10_4064_cm_83_1_101_105,
     author = {K. Omiljanowski and S. Solecki and J. Zielinski},
     title = {Complexity of the class of {Peano} functions},
     journal = {Colloquium Mathematicum},
     pages = {101--105},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-83-1-101-105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/}
}
TY  - JOUR
AU  - K. Omiljanowski
AU  - S. Solecki
AU  - J. Zielinski
TI  - Complexity of the class of Peano functions
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 101
EP  - 105
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/
DO  - 10.4064/cm-83-1-101-105
LA  - en
ID  - 10_4064_cm_83_1_101_105
ER  - 
%0 Journal Article
%A K. Omiljanowski
%A S. Solecki
%A J. Zielinski
%T Complexity of the class of Peano functions
%J Colloquium Mathematicum
%D 2000
%P 101-105
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/
%R 10.4064/cm-83-1-101-105
%G en
%F 10_4064_cm_83_1_101_105
K. Omiljanowski; S. Solecki; J. Zielinski. Complexity of the class of Peano functions. Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 101-105. doi: 10.4064/cm-83-1-101-105

Cité par Sources :