Complexity of the class of Peano functions
Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 101-105
We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.
@article{10_4064_cm_83_1_101_105,
author = {K. Omiljanowski and S. Solecki and J. Zielinski},
title = {Complexity of the class of {Peano} functions},
journal = {Colloquium Mathematicum},
pages = {101--105},
year = {2000},
volume = {83},
number = {1},
doi = {10.4064/cm-83-1-101-105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/}
}
TY - JOUR AU - K. Omiljanowski AU - S. Solecki AU - J. Zielinski TI - Complexity of the class of Peano functions JO - Colloquium Mathematicum PY - 2000 SP - 101 EP - 105 VL - 83 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/ DO - 10.4064/cm-83-1-101-105 LA - en ID - 10_4064_cm_83_1_101_105 ER -
K. Omiljanowski; S. Solecki; J. Zielinski. Complexity of the class of Peano functions. Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 101-105. doi: 10.4064/cm-83-1-101-105
Cité par Sources :