Complexity of the class of Peano functions
Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 101-105
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.
Affiliations des auteurs :
K. Omiljanowski 1 ; S. Solecki 1 ; J. Zielinski 1
@article{10_4064_cm_83_1_101_105,
author = {K. Omiljanowski and S. Solecki and J. Zielinski},
title = {Complexity of the class of {Peano} functions},
journal = {Colloquium Mathematicum},
pages = {101--105},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2000},
doi = {10.4064/cm-83-1-101-105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/}
}
TY - JOUR AU - K. Omiljanowski AU - S. Solecki AU - J. Zielinski TI - Complexity of the class of Peano functions JO - Colloquium Mathematicum PY - 2000 SP - 101 EP - 105 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/ DO - 10.4064/cm-83-1-101-105 LA - en ID - 10_4064_cm_83_1_101_105 ER -
%0 Journal Article %A K. Omiljanowski %A S. Solecki %A J. Zielinski %T Complexity of the class of Peano functions %J Colloquium Mathematicum %D 2000 %P 101-105 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-101-105/ %R 10.4064/cm-83-1-101-105 %G en %F 10_4064_cm_83_1_101_105
K. Omiljanowski; S. Solecki; J. Zielinski. Complexity of the class of Peano functions. Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 101-105. doi: 10.4064/cm-83-1-101-105
Cité par Sources :