A limit involving functions in $W^{1,p}_0(Ω)$
Colloquium Mathematicum, Tome 82 (1999) no. 2, pp. 219-222
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We point out the following fact: if Ω ⊂ $ℝ^n$ is a bounded open set, δ>0, and p>1, then $lim_{
@article{10_4064_cm_82_2_219_222,
author = {Biagio Ricceri},
title = {A limit involving functions in $W^{1,p}_0(\ensuremath{\Omega})$},
journal = {Colloquium Mathematicum},
pages = {219--222},
year = {1999},
volume = {82},
number = {2},
doi = {10.4064/cm-82-2-219-222},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-219-222/}
}
Biagio Ricceri. A limit involving functions in $W^{1,p}_0(Ω)$. Colloquium Mathematicum, Tome 82 (1999) no. 2, pp. 219-222. doi: 10.4064/cm-82-2-219-222
Cité par Sources :