Infinite ergodic index $ℤ^d$ -actions in infinite measure
Colloquium Mathematicum, Tome 82 (1999) no. 2, pp. 167-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct infinite measure preserving and nonsingular rank one $ℤ^d$-actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving $ℤ^d$-actions; for these we show that the individual basis transformations have conservative ergodic Cartesian products of all orders, hence infinite ergodic index. We generalize this example to obtain a stronger condition called power weakly mixing. The last examples are nonsingular $ℤ^d$-actions for each Krieger ratio set type with individual basis transformations with similar properties.
DOI : 10.4064/cm-82-2-167-190

E. Muehlegger 1 ; A. Raich 1 ; C. Silva 1 ; M. Touloumtzis 1 ; B. Narasimhan 1 ; W. Zhao 1

1
@article{10_4064_cm_82_2_167_190,
     author = {E. Muehlegger and A. Raich and C. Silva and M. Touloumtzis and B. Narasimhan and W. Zhao},
     title = {Infinite ergodic index $\ensuremath{\mathbb{Z}}^d$ -actions in infinite measure},
     journal = {Colloquium Mathematicum},
     pages = {167--190},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-82-2-167-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-167-190/}
}
TY  - JOUR
AU  - E. Muehlegger
AU  - A. Raich
AU  - C. Silva
AU  - M. Touloumtzis
AU  - B. Narasimhan
AU  - W. Zhao
TI  - Infinite ergodic index $ℤ^d$ -actions in infinite measure
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 167
EP  - 190
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-167-190/
DO  - 10.4064/cm-82-2-167-190
LA  - en
ID  - 10_4064_cm_82_2_167_190
ER  - 
%0 Journal Article
%A E. Muehlegger
%A A. Raich
%A C. Silva
%A M. Touloumtzis
%A B. Narasimhan
%A W. Zhao
%T Infinite ergodic index $ℤ^d$ -actions in infinite measure
%J Colloquium Mathematicum
%D 1999
%P 167-190
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-167-190/
%R 10.4064/cm-82-2-167-190
%G en
%F 10_4064_cm_82_2_167_190
E. Muehlegger; A. Raich; C. Silva; M. Touloumtzis; B. Narasimhan; W. Zhao. Infinite ergodic index $ℤ^d$ -actions in infinite measure. Colloquium Mathematicum, Tome 82 (1999) no. 2, pp. 167-190. doi : 10.4064/cm-82-2-167-190. http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-167-190/

Cité par Sources :