Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$
Colloquium Mathematicum, Tome 82 (1999) no. 2, pp. 155-166.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The two-dimensional classical Hardy spaces $H_p(ℝ × ℝ)$ are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from $H_p(ℝ × ℝ)$ to $L_p(ℝ^2)$ (1/2 p ≤ ∞) and is of weak type $(H^{#}_1 (ℝ × ℝ), L_1(ℝ^2))$ where the Hardy space $H^#_1(ℝ × ℝ)$ is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ $H_1^#(ℝ × ℝ)$$LlogL(ℝ^2)$ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on $H_p(ℝ × ℝ)$ whenever 1/2 p ∞. Thus, in case f ∈ $H_p(ℝ × ℝ)$, the Fejér means converge to f in $H_p(ℝ × ℝ)$ norm (1/2 p ∞). The same results are proved for the conjugate Fejér means.
DOI : 10.4064/cm-82-2-155-166
Keywords: p-atom, Hardy spaces, atomic decomposition, interpolation, Fejér means

Ferenc Weisz 1

1
@article{10_4064_cm_82_2_155_166,
     author = {Ferenc Weisz},
     title = {Fej\'er means of two-dimensional {Fourier} transforms on $H_p(\ensuremath{\mathbb{R}} {\texttimes} \ensuremath{\mathbb{R}})$},
     journal = {Colloquium Mathematicum},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-82-2-155-166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-155-166/}
}
TY  - JOUR
AU  - Ferenc Weisz
TI  - Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 155
EP  - 166
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-155-166/
DO  - 10.4064/cm-82-2-155-166
LA  - en
ID  - 10_4064_cm_82_2_155_166
ER  - 
%0 Journal Article
%A Ferenc Weisz
%T Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$
%J Colloquium Mathematicum
%D 1999
%P 155-166
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-155-166/
%R 10.4064/cm-82-2-155-166
%G en
%F 10_4064_cm_82_2_155_166
Ferenc Weisz. Fejér means of two-dimensional Fourier transforms on $H_p(ℝ × ℝ)$. Colloquium Mathematicum, Tome 82 (1999) no. 2, pp. 155-166. doi : 10.4064/cm-82-2-155-166. http://geodesic.mathdoc.fr/articles/10.4064/cm-82-2-155-166/

Cité par Sources :