Finite groups with globally permutable lattice of subgroups
Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 65-77
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The notions of permutable and globally permutable lattices were first introduced and studied by J. Krempa and B. Terlikowska-Osłowska [4]. These are lattices preserving many interesting properties of modular lattices. In this paper all finite groups with globally permutable lattices of subgroups are described. It is shown that such finite p-groups are exactly the p-groups with modular lattices of subgroups, and that the non-nilpotent groups form an essentially larger class though they have a description very similar to that of non-nilpotent modular groups.
@article{10_4064_cm_82_1_65_77,
     author = {C. Bagi\'nski and A. Sakowicz},
     title = {Finite groups with globally permutable lattice of subgroups},
     journal = {Colloquium Mathematicum},
     pages = {65--77},
     year = {1999},
     volume = {82},
     number = {1},
     doi = {10.4064/cm-82-1-65-77},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-65-77/}
}
TY  - JOUR
AU  - C. Bagiński
AU  - A. Sakowicz
TI  - Finite groups with globally permutable lattice of subgroups
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 65
EP  - 77
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-65-77/
DO  - 10.4064/cm-82-1-65-77
LA  - en
ID  - 10_4064_cm_82_1_65_77
ER  - 
%0 Journal Article
%A C. Bagiński
%A A. Sakowicz
%T Finite groups with globally permutable lattice of subgroups
%J Colloquium Mathematicum
%D 1999
%P 65-77
%V 82
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-65-77/
%R 10.4064/cm-82-1-65-77
%G en
%F 10_4064_cm_82_1_65_77
C. Bagiński; A. Sakowicz. Finite groups with globally permutable lattice of subgroups. Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 65-77. doi: 10.4064/cm-82-1-65-77

Cité par Sources :