Pieri-type formulas for maximal isotropic Grassmannians via triple intersections
Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 49-63
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give an elementary proof of the Pieri-type formula in the cohomology ring of a Grassmannian of maximal isotropic subspaces of an orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The multiplicities (which are powers of 2) in the Pieri-type formula are seen to arise from the intersection of a collection of quadrics with a linear space.
@article{10_4064_cm_82_1_49_63,
author = {Frank Sottile},
title = {Pieri-type formulas for maximal isotropic {Grassmannians} via triple intersections},
journal = {Colloquium Mathematicum},
pages = {49--63},
year = {1999},
volume = {82},
number = {1},
doi = {10.4064/cm-82-1-49-63},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-49-63/}
}
TY - JOUR AU - Frank Sottile TI - Pieri-type formulas for maximal isotropic Grassmannians via triple intersections JO - Colloquium Mathematicum PY - 1999 SP - 49 EP - 63 VL - 82 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-49-63/ DO - 10.4064/cm-82-1-49-63 LA - en ID - 10_4064_cm_82_1_49_63 ER -
Frank Sottile. Pieri-type formulas for maximal isotropic Grassmannians via triple intersections. Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 49-63. doi: 10.4064/cm-82-1-49-63
Cité par Sources :