Cohen-Macaulay modules over two-dimensional graph orders
Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 25-48.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a split graph order ℒ over a complete local regular domain $\cal O$ of dimension 2 the indecomposable Cohen-Macaulay modules decompose - up to irreducible projectives - into a union of the indecomposable Cohen-Macaulay modules over graph orders of type •—• . There, the Cohen-Macaulay modules filtered by irreducible Cohen-Macaulay modules are in bijection to the homomorphisms $ϕ : \ovv{{\cal O}}{L}^{(μ)} → \ovv{{\cal O}}{L}^{(ν)}$ under the bi-action of the groups $(Gl(μ,\ovv{{\cal O}}{L}),Gl(ν,\ovv{{\cal O}}{L}))$, where $\ovv{{\cal O}}{L} = \cal{O}/〈π〉$ for a prime π. This problem strongly depends on the nature of $\ovv{{\cal O}}{L}$. If $\ovv{{\cal O}}{L}$ is regular, then the category of indecomposable filtered Cohen-Macaulay modules is bounded. This latter condition is satisfied if ℒ is the completion of the Hecke order of the dihedral group of order 2p with p an odd prime at the maximal ideal 〈q-1,p〉, and more generally of blocks of defect p of complete Hecke orders. If $\ovv{{\cal O}}{L}$ is not regular, then the category of indecomposable filtered Cohen-Macaulay modules is unbounded.
DOI : 10.4064/cm-82-1-25-48

Klaus Roggenkamp 1

1
@article{10_4064_cm_82_1_25_48,
     author = {Klaus Roggenkamp},
     title = {Cohen-Macaulay modules over two-dimensional graph orders},
     journal = {Colloquium Mathematicum},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-82-1-25-48},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-25-48/}
}
TY  - JOUR
AU  - Klaus Roggenkamp
TI  - Cohen-Macaulay modules over two-dimensional graph orders
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 25
EP  - 48
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-25-48/
DO  - 10.4064/cm-82-1-25-48
LA  - en
ID  - 10_4064_cm_82_1_25_48
ER  - 
%0 Journal Article
%A Klaus Roggenkamp
%T Cohen-Macaulay modules over two-dimensional graph orders
%J Colloquium Mathematicum
%D 1999
%P 25-48
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-25-48/
%R 10.4064/cm-82-1-25-48
%G en
%F 10_4064_cm_82_1_25_48
Klaus Roggenkamp. Cohen-Macaulay modules over two-dimensional graph orders. Colloquium Mathematicum, Tome 82 (1999) no. 1, pp. 25-48. doi : 10.4064/cm-82-1-25-48. http://geodesic.mathdoc.fr/articles/10.4064/cm-82-1-25-48/

Cité par Sources :