Polynomial algebra of constants of the Lotka-Volterra system
Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 263-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form $d = x(Cy+z)\frac{∂}{∂x} + y(Az+x)\frac{∂}{∂y} + z(Bx+y)\frac{∂}{∂z}$, called the Lotka-Volterra derivation, where A,B,C ∈ k.
DOI : 10.4064/cm-81-2-263-270

Jean Moulin Ollagnier 1 ; Andrzej Nowicki 1

1
@article{10_4064_cm_81_2_263_270,
     author = {Jean Moulin Ollagnier and Andrzej Nowicki},
     title = {Polynomial algebra of constants of the {Lotka-Volterra} system},
     journal = {Colloquium Mathematicum},
     pages = {263--270},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-81-2-263-270},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-263-270/}
}
TY  - JOUR
AU  - Jean Moulin Ollagnier
AU  - Andrzej Nowicki
TI  - Polynomial algebra of constants of the Lotka-Volterra system
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 263
EP  - 270
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-263-270/
DO  - 10.4064/cm-81-2-263-270
LA  - de
ID  - 10_4064_cm_81_2_263_270
ER  - 
%0 Journal Article
%A Jean Moulin Ollagnier
%A Andrzej Nowicki
%T Polynomial algebra of constants of the Lotka-Volterra system
%J Colloquium Mathematicum
%D 1999
%P 263-270
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-263-270/
%R 10.4064/cm-81-2-263-270
%G de
%F 10_4064_cm_81_2_263_270
Jean Moulin Ollagnier; Andrzej Nowicki. Polynomial algebra of constants of the Lotka-Volterra system. Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 263-270. doi : 10.4064/cm-81-2-263-270. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-263-270/

Cité par Sources :