Front d'onde et propagation des singularités pour un vecteur-distribution
Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 161-191
We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.
@article{10_4064_cm_81_2_161_191,
author = {Dominique Manchon},
title = {Front d'onde et propagation des singularit\'es pour un vecteur-distribution},
journal = {Colloquium Mathematicum},
pages = {161--191},
year = {1999},
volume = {81},
number = {2},
doi = {10.4064/cm-81-2-161-191},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-161-191/}
}
TY - JOUR AU - Dominique Manchon TI - Front d'onde et propagation des singularités pour un vecteur-distribution JO - Colloquium Mathematicum PY - 1999 SP - 161 EP - 191 VL - 81 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-2-161-191/ DO - 10.4064/cm-81-2-161-191 LA - fr ID - 10_4064_cm_81_2_161_191 ER -
Dominique Manchon. Front d'onde et propagation des singularités pour un vecteur-distribution. Colloquium Mathematicum, Tome 81 (1999) no. 2, pp. 161-191. doi: 10.4064/cm-81-2-161-191
Cité par Sources :