Varieties of idempotent groupoids with small clones
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 63-87.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.
DOI : 10.4064/cm-81-1-63-87

J. Gałuszka 1

1
@article{10_4064_cm_81_1_63_87,
     author = {J. Ga{\l}uszka},
     title = {Varieties of idempotent groupoids with small clones},
     journal = {Colloquium Mathematicum},
     pages = {63--87},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-81-1-63-87},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-63-87/}
}
TY  - JOUR
AU  - J. Gałuszka
TI  - Varieties of idempotent groupoids with small clones
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 63
EP  - 87
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-63-87/
DO  - 10.4064/cm-81-1-63-87
LA  - en
ID  - 10_4064_cm_81_1_63_87
ER  - 
%0 Journal Article
%A J. Gałuszka
%T Varieties of idempotent groupoids with small clones
%J Colloquium Mathematicum
%D 1999
%P 63-87
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-63-87/
%R 10.4064/cm-81-1-63-87
%G en
%F 10_4064_cm_81_1_63_87
J. Gałuszka. Varieties of idempotent groupoids with small clones. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 63-87. doi : 10.4064/cm-81-1-63-87. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-63-87/

Cité par Sources :