Invariants and flow geometry
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 33-50
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow $ℱ_ξ$ generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g,$ℱ_ξ$), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.
Keywords:
flow model spaces, normal, contact and curvature homogeneous flows, invariants and characterizations of special Riemannian manifolds, flows generated by a unit Killing vector field
Affiliations des auteurs :
J. González-Dávila 1 ; L. Vanhecke 1
@article{10_4064_cm_81_1_33_50,
author = {J. Gonz\'alez-D\'avila and L. Vanhecke},
title = {Invariants and flow geometry},
journal = {Colloquium Mathematicum},
pages = {33--50},
year = {1999},
volume = {81},
number = {1},
doi = {10.4064/cm-81-1-33-50},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-33-50/}
}
J. González-Dávila; L. Vanhecke. Invariants and flow geometry. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 33-50. doi: 10.4064/cm-81-1-33-50
Cité par Sources :