Full embeddings of almost split sequences over split-by-nilpotent extensions
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 21-31.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let R be a split extension of an artin algebra A by a nilpotent bimodule $_A Q_A$, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if $Hom_A (Q, τ_A M)$ = 0 and $M ⊗ _A Q = 0$.
DOI : 10.4064/cm-81-1-21-31
Keywords: Auslan-der-Reiten translate, split-by-nilpotent extension, almost split sequence

Ibrahim Assem 1 ; Dan Zacharia 1

1
@article{10_4064_cm_81_1_21_31,
     author = {Ibrahim Assem and Dan Zacharia},
     title = {Full embeddings of almost split sequences over split-by-nilpotent extensions},
     journal = {Colloquium Mathematicum},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-81-1-21-31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-21-31/}
}
TY  - JOUR
AU  - Ibrahim Assem
AU  - Dan Zacharia
TI  - Full embeddings of almost split sequences over split-by-nilpotent extensions
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 21
EP  - 31
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-21-31/
DO  - 10.4064/cm-81-1-21-31
LA  - en
ID  - 10_4064_cm_81_1_21_31
ER  - 
%0 Journal Article
%A Ibrahim Assem
%A Dan Zacharia
%T Full embeddings of almost split sequences over split-by-nilpotent extensions
%J Colloquium Mathematicum
%D 1999
%P 21-31
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-21-31/
%R 10.4064/cm-81-1-21-31
%G en
%F 10_4064_cm_81_1_21_31
Ibrahim Assem; Dan Zacharia. Full embeddings of almost split sequences over split-by-nilpotent extensions. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 21-31. doi : 10.4064/cm-81-1-21-31. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-21-31/

Cité par Sources :