A generalization of a result on integers in metacyclic extensions
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 153-156
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let p be an odd prime and let c be an integer such that c>1 and c divides p-1. Let G be a metacyclic group of order pc and let k be a field such that pc is prime to the characteristic of k. Assume that k contains a primitive pcth root of unity. We first characterize the normal extensions L/k with Galois group isomorphic to G when p and c satisfy a certain condition. Then we apply our characterization to the case in which k is an algebraic number field with ring of integers ℴ, and, assuming some additional conditions on such extensions, study the ring of integers {\got O}_L in L as a module over ℴ.
@article{10_4064_cm_81_1_153_156,
author = {James Carter},
title = {A generalization of a result on integers in metacyclic extensions},
journal = {Colloquium Mathematicum},
pages = {153--156},
year = {1999},
volume = {81},
number = {1},
doi = {10.4064/cm-81-1-153-156},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-153-156/}
}
TY - JOUR AU - James Carter TI - A generalization of a result on integers in metacyclic extensions JO - Colloquium Mathematicum PY - 1999 SP - 153 EP - 156 VL - 81 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-153-156/ DO - 10.4064/cm-81-1-153-156 LA - en ID - 10_4064_cm_81_1_153_156 ER -
James Carter. A generalization of a result on integers in metacyclic extensions. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 153-156. doi: 10.4064/cm-81-1-153-156
Cité par Sources :