A generalization of a result on integers in metacyclic extensions
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 153-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let p be an odd prime and let c be an integer such that c>1 and c divides p-1. Let G be a metacyclic group of order pc and let k be a field such that pc is prime to the characteristic of k. Assume that k contains a primitive pcth root of unity. We first characterize the normal extensions L/k with Galois group isomorphic to G when p and c satisfy a certain condition. Then we apply our characterization to the case in which k is an algebraic number field with ring of integers ℴ, and, assuming some additional conditions on such extensions, study the ring of integers {\got O}_L in L as a module over ℴ.
DOI : 10.4064/cm-81-1-153-156

James Carter 1

1
@article{10_4064_cm_81_1_153_156,
     author = {James Carter},
     title = {A generalization of a result on integers in metacyclic extensions},
     journal = {Colloquium Mathematicum},
     pages = {153--156},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-81-1-153-156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-153-156/}
}
TY  - JOUR
AU  - James Carter
TI  - A generalization of a result on integers in metacyclic extensions
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 153
EP  - 156
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-153-156/
DO  - 10.4064/cm-81-1-153-156
LA  - en
ID  - 10_4064_cm_81_1_153_156
ER  - 
%0 Journal Article
%A James Carter
%T A generalization of a result on integers in metacyclic extensions
%J Colloquium Mathematicum
%D 1999
%P 153-156
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-153-156/
%R 10.4064/cm-81-1-153-156
%G en
%F 10_4064_cm_81_1_153_156
James Carter. A generalization of a result on integers in metacyclic extensions. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 153-156. doi : 10.4064/cm-81-1-153-156. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-153-156/

Cité par Sources :