Curvature homogeneity of affine connections on two-dimensional manifolds
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 123-139.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Curvature homogeneity of (torsion-free) affine connections on manifolds is an adaptation of a concept introduced by I. M. Singer. We analyze completely the relationship between curvature homogeneity of higher order and local homogeneity on two-dimensional manifolds.
DOI : 10.4064/cm-81-1-123-139
Keywords: curvature homogeneous connections, two-dimensional manifolds with affine connection, locally homogeneous connections

Oldřich Kowalski 1 ; Barbara Opozda 1 ; Zdeněk Vlášek 1

1
@article{10_4064_cm_81_1_123_139,
     author = {Old\v{r}ich Kowalski and Barbara Opozda and Zden\v{e}k Vl\'a\v{s}ek},
     title = {Curvature homogeneity of affine connections on two-dimensional manifolds},
     journal = {Colloquium Mathematicum},
     pages = {123--139},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-81-1-123-139},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-123-139/}
}
TY  - JOUR
AU  - Oldřich Kowalski
AU  - Barbara Opozda
AU  - Zdeněk Vlášek
TI  - Curvature homogeneity of affine connections on two-dimensional manifolds
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 123
EP  - 139
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-123-139/
DO  - 10.4064/cm-81-1-123-139
LA  - en
ID  - 10_4064_cm_81_1_123_139
ER  - 
%0 Journal Article
%A Oldřich Kowalski
%A Barbara Opozda
%A Zdeněk Vlášek
%T Curvature homogeneity of affine connections on two-dimensional manifolds
%J Colloquium Mathematicum
%D 1999
%P 123-139
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-123-139/
%R 10.4064/cm-81-1-123-139
%G en
%F 10_4064_cm_81_1_123_139
Oldřich Kowalski; Barbara Opozda; Zdeněk Vlášek. Curvature homogeneity of affine connections on two-dimensional manifolds. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 123-139. doi : 10.4064/cm-81-1-123-139. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-123-139/

Cité par Sources :