Nonlinear Heat Equation with a Fractional Laplacian in a Disk
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 101-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For the nonlinear heat equation with a fractional Laplacian $u_t + (-Δ)^{α/2} u = u^2$, 1 α ≤ 2, the first initial-boundary value problem in a disk is considered. Small initial conditions, homogeneous boundary conditions, and periodicity conditions in the angular coordinate are imposed. Existence and uniqueness of a global-in-time solution is proved, and the solution is constructed in the form of a series of eigenfunctions of the Laplace operator in the disk. First-order long-time asymptotics of the solution is obtained.
Keywords:
nonlinear heat equation, long-time asymptotics, fractional Laplacian, initial-boundary value problem in a disk
Affiliations des auteurs :
Vladimir Varlamov 1
@article{10_4064_cm_81_1_101_122,
author = {Vladimir Varlamov},
title = {Nonlinear {Heat} {Equation} with a {Fractional} {Laplacian} in a {Disk}},
journal = {Colloquium Mathematicum},
pages = {101--122},
publisher = {mathdoc},
volume = {81},
number = {1},
year = {1999},
doi = {10.4064/cm-81-1-101-122},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-101-122/}
}
TY - JOUR AU - Vladimir Varlamov TI - Nonlinear Heat Equation with a Fractional Laplacian in a Disk JO - Colloquium Mathematicum PY - 1999 SP - 101 EP - 122 VL - 81 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-101-122/ DO - 10.4064/cm-81-1-101-122 LA - en ID - 10_4064_cm_81_1_101_122 ER -
Vladimir Varlamov. Nonlinear Heat Equation with a Fractional Laplacian in a Disk. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 101-122. doi: 10.4064/cm-81-1-101-122
Cité par Sources :