Nonlinear Heat Equation with a Fractional Laplacian in a Disk
Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 101-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For the nonlinear heat equation with a fractional Laplacian $u_t + (-Δ)^{α/2} u = u^2$, 1 α ≤ 2, the first initial-boundary value problem in a disk is considered. Small initial conditions, homogeneous boundary conditions, and periodicity conditions in the angular coordinate are imposed. Existence and uniqueness of a global-in-time solution is proved, and the solution is constructed in the form of a series of eigenfunctions of the Laplace operator in the disk. First-order long-time asymptotics of the solution is obtained.
DOI : 10.4064/cm-81-1-101-122
Keywords: nonlinear heat equation, long-time asymptotics, fractional Laplacian, initial-boundary value problem in a disk

Vladimir Varlamov 1

1
@article{10_4064_cm_81_1_101_122,
     author = {Vladimir Varlamov},
     title = {Nonlinear {Heat} {Equation} with a {Fractional} {Laplacian} in a {Disk}},
     journal = {Colloquium Mathematicum},
     pages = {101--122},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-81-1-101-122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-101-122/}
}
TY  - JOUR
AU  - Vladimir Varlamov
TI  - Nonlinear Heat Equation with a Fractional Laplacian in a Disk
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 101
EP  - 122
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-101-122/
DO  - 10.4064/cm-81-1-101-122
LA  - en
ID  - 10_4064_cm_81_1_101_122
ER  - 
%0 Journal Article
%A Vladimir Varlamov
%T Nonlinear Heat Equation with a Fractional Laplacian in a Disk
%J Colloquium Mathematicum
%D 1999
%P 101-122
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-101-122/
%R 10.4064/cm-81-1-101-122
%G en
%F 10_4064_cm_81_1_101_122
Vladimir Varlamov. Nonlinear Heat Equation with a Fractional Laplacian in a Disk. Colloquium Mathematicum, Tome 81 (1999) no. 1, pp. 101-122. doi : 10.4064/cm-81-1-101-122. http://geodesic.mathdoc.fr/articles/10.4064/cm-81-1-101-122/

Cité par Sources :