A duality result for almost split sequences
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 267-292
Over an artinian hereditary ring R, we discuss how the existence of almost split sequences starting at the indecomposable non-injective preprojective right R-modules is related to the existence of almost split sequences ending at the indecomposable non-projective preinjective left R-modules. This answers a question raised by Simson in [27] in connection with pure semisimple rings.
@article{10_4064_cm_80_2_267_292,
author = {Lidia H\"ugel and Helmut Valenta},
title = {A duality result for almost split sequences},
journal = {Colloquium Mathematicum},
pages = {267--292},
year = {1999},
volume = {80},
number = {2},
doi = {10.4064/cm-80-2-267-292},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-267-292/}
}
TY - JOUR AU - Lidia Hügel AU - Helmut Valenta TI - A duality result for almost split sequences JO - Colloquium Mathematicum PY - 1999 SP - 267 EP - 292 VL - 80 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-267-292/ DO - 10.4064/cm-80-2-267-292 LA - en ID - 10_4064_cm_80_2_267_292 ER -
Lidia Hügel; Helmut Valenta. A duality result for almost split sequences. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 267-292. doi: 10.4064/cm-80-2-267-292
Cité par Sources :