Pseudo-Bochner curvature tensor on Hermitian manifolds
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 201-209.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Our main purpose of this paper is to introduce a natural generalization $B_H$ of the Bochner curvature tensor on a Hermitian manifold $M$ provided with the Hermitian connection. We will call $B_H$ the pseudo-Bochner curvature tensor. Firstly, we introduce a unique tensor P, called the (Hermitian) pseudo-curvature tensor, which has the same symmetries as the Riemannian curvature tensor on a Kähler manifold. By using P, we derive a necessary and sufficient condition for a Hermitian manifold to be of pointwise constant Hermitian holomorphic sectional curvature. Our pseudo-Bochner curvature tensor $B_H$ is naturally obtained from the conformal relation for the pseudo-curvature tensor P and it is conformally invariant. Moreover we show that $B_H$ is different from the Bochner conformal tensor in the sense of Tricerri and Vanhecke.
DOI : 10.4064/cm-80-2-201-209
Keywords: Hermitian manifold, Hermitian connection, pseudo-Bochner curvature tensor, (Hermitian) pseudo-curvature tensor

Koji Matsuo 1

1
@article{10_4064_cm_80_2_201_209,
     author = {Koji Matsuo},
     title = {Pseudo-Bochner curvature tensor on {Hermitian} manifolds},
     journal = {Colloquium Mathematicum},
     pages = {201--209},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-80-2-201-209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-201-209/}
}
TY  - JOUR
AU  - Koji Matsuo
TI  - Pseudo-Bochner curvature tensor on Hermitian manifolds
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 201
EP  - 209
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-201-209/
DO  - 10.4064/cm-80-2-201-209
LA  - en
ID  - 10_4064_cm_80_2_201_209
ER  - 
%0 Journal Article
%A Koji Matsuo
%T Pseudo-Bochner curvature tensor on Hermitian manifolds
%J Colloquium Mathematicum
%D 1999
%P 201-209
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-201-209/
%R 10.4064/cm-80-2-201-209
%G en
%F 10_4064_cm_80_2_201_209
Koji Matsuo. Pseudo-Bochner curvature tensor on Hermitian manifolds. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 201-209. doi : 10.4064/cm-80-2-201-209. http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-201-209/

Cité par Sources :