Pseudo-Bochner curvature tensor on Hermitian manifolds
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 201-209
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Our main purpose of this paper is to introduce a natural generalization $B_H$ of the Bochner curvature tensor on a Hermitian manifold $M$ provided with the Hermitian connection. We will call $B_H$ the pseudo-Bochner curvature tensor. Firstly, we introduce a unique tensor P, called the (Hermitian) pseudo-curvature tensor, which has the same symmetries as the Riemannian curvature tensor on a Kähler manifold. By using P, we derive a necessary and sufficient condition for a Hermitian manifold to be of pointwise constant Hermitian holomorphic sectional curvature. Our pseudo-Bochner curvature tensor $B_H$ is naturally obtained from the conformal relation for the pseudo-curvature tensor P and it is conformally invariant. Moreover we show that $B_H$ is different from the Bochner conformal tensor in the sense of Tricerri and Vanhecke.
Keywords:
Hermitian manifold, Hermitian connection, pseudo-Bochner curvature tensor, (Hermitian) pseudo-curvature tensor
Affiliations des auteurs :
Koji Matsuo 1
@article{10_4064_cm_80_2_201_209,
author = {Koji Matsuo},
title = {Pseudo-Bochner curvature tensor on {Hermitian} manifolds},
journal = {Colloquium Mathematicum},
pages = {201--209},
publisher = {mathdoc},
volume = {80},
number = {2},
year = {1999},
doi = {10.4064/cm-80-2-201-209},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-201-209/}
}
TY - JOUR AU - Koji Matsuo TI - Pseudo-Bochner curvature tensor on Hermitian manifolds JO - Colloquium Mathematicum PY - 1999 SP - 201 EP - 209 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-201-209/ DO - 10.4064/cm-80-2-201-209 LA - en ID - 10_4064_cm_80_2_201_209 ER -
Koji Matsuo. Pseudo-Bochner curvature tensor on Hermitian manifolds. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 201-209. doi: 10.4064/cm-80-2-201-209
Cité par Sources :