On quasi-p-bounded subsets
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 175-189.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The notion of quasi-p-boundedness for p ∈ $ω^*$ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in $ω^*$ can be defined in terms of quasi-p-pseudocompactness. For p ∈ $ω^*$, we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × $P_{RK}(p)$ is bounded in X × $P_{RK}(p)$, if and only if $cl_{β(X × P_{RK}(p))}(B× P_{RK}(p)) = cl_{βX} B × β(ω)$, where $P_{RK}(p)$ is the set of Rudin-Keisler predecessors of p.
DOI : 10.4064/cm-80-2-175-189
Keywords: free ultrafilter, P-point, (quasi)-p-pseudocompact space, Rudin-Keisler pre-order, p-limit point, (quasi)-p-bounded subset, bounded subset

M. Sanchis 1 ; A. Tamariz-Mascarúa 1

1
@article{10_4064_cm_80_2_175_189,
     author = {M. Sanchis and A. Tamariz-Mascar\'ua},
     title = {On quasi-p-bounded subsets},
     journal = {Colloquium Mathematicum},
     pages = {175--189},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-80-2-175-189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-175-189/}
}
TY  - JOUR
AU  - M. Sanchis
AU  - A. Tamariz-Mascarúa
TI  - On quasi-p-bounded subsets
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 175
EP  - 189
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-175-189/
DO  - 10.4064/cm-80-2-175-189
LA  - en
ID  - 10_4064_cm_80_2_175_189
ER  - 
%0 Journal Article
%A M. Sanchis
%A A. Tamariz-Mascarúa
%T On quasi-p-bounded subsets
%J Colloquium Mathematicum
%D 1999
%P 175-189
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-175-189/
%R 10.4064/cm-80-2-175-189
%G en
%F 10_4064_cm_80_2_175_189
M. Sanchis; A. Tamariz-Mascarúa. On quasi-p-bounded subsets. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 175-189. doi : 10.4064/cm-80-2-175-189. http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-175-189/

Cité par Sources :