Symmetric Hochschild extension algebras
Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 155-174
By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule $Hom_K(A,K)$. We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of the K-algebra LQ for an arbitrary finite quiver Q without oriented cycles. Then we show a criterion on L for all those K-algebras LQ to have symmetric non-splittable extension algebras defined by the 2-cocycles.
@article{10_4064_cm_80_2_155_174,
author = {Yosuke Ohnuki and Kaoru Takeda and Kunio Yamagata},
title = {Symmetric {Hochschild} extension algebras},
journal = {Colloquium Mathematicum},
pages = {155--174},
year = {1999},
volume = {80},
number = {2},
doi = {10.4064/cm-80-2-155-174},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-155-174/}
}
TY - JOUR AU - Yosuke Ohnuki AU - Kaoru Takeda AU - Kunio Yamagata TI - Symmetric Hochschild extension algebras JO - Colloquium Mathematicum PY - 1999 SP - 155 EP - 174 VL - 80 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-80-2-155-174/ DO - 10.4064/cm-80-2-155-174 LA - de ID - 10_4064_cm_80_2_155_174 ER -
Yosuke Ohnuki; Kaoru Takeda; Kunio Yamagata. Symmetric Hochschild extension algebras. Colloquium Mathematicum, Tome 80 (1999) no. 2, pp. 155-174. doi: 10.4064/cm-80-2-155-174
Cité par Sources :