Analytic solutions of a second-order functional differential equation with a state derivative dependent delay
Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 273-281
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper is concerned with a second-order functional differential equation of the form $x''(z)=x(az+bx'(z))$ with the distinctive feature that the argument of the unknown function depends on the state derivative. An existence theorem is established for analytic solutions and systematic methods for deriving explicit solutions are also given.
Keywords:
analytic solution, functional differential equation
Affiliations des auteurs :
Jian-Guo Si 1 ; Xin-Ping Wang 1
@article{10_4064_cm_79_2_273_281,
author = {Jian-Guo Si and Xin-Ping Wang},
title = {Analytic solutions of a second-order functional differential equation with a state derivative dependent delay},
journal = {Colloquium Mathematicum},
pages = {273--281},
year = {1999},
volume = {79},
number = {2},
doi = {10.4064/cm-79-2-273-281},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-273-281/}
}
TY - JOUR AU - Jian-Guo Si AU - Xin-Ping Wang TI - Analytic solutions of a second-order functional differential equation with a state derivative dependent delay JO - Colloquium Mathematicum PY - 1999 SP - 273 EP - 281 VL - 79 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-273-281/ DO - 10.4064/cm-79-2-273-281 LA - en ID - 10_4064_cm_79_2_273_281 ER -
%0 Journal Article %A Jian-Guo Si %A Xin-Ping Wang %T Analytic solutions of a second-order functional differential equation with a state derivative dependent delay %J Colloquium Mathematicum %D 1999 %P 273-281 %V 79 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-273-281/ %R 10.4064/cm-79-2-273-281 %G en %F 10_4064_cm_79_2_273_281
Jian-Guo Si; Xin-Ping Wang. Analytic solutions of a second-order functional differential equation with a state derivative dependent delay. Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 273-281. doi: 10.4064/cm-79-2-273-281
Cité par Sources :