Vector-valued ergodic theorems for multiparameter additive processes
Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 193-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T={T(u):u=($u_{1}$, ... ,$u_{d})$, $u_{i}$ ≥ 0, 1 ≤ i ≤ d } be a strongly measurable d-parameter semigroup of linear contractions on $L_{1}$((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on $L_{1}$((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ $L_{1}$((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in $L_{1}$((Ω,Σ,μ);X) with respect to the semigroup T.
DOI : 10.4064/cm-79-2-193-202

Ryotaro Sato 1

1
@article{10_4064_cm_79_2_193_202,
     author = {Ryotaro Sato},
     title = {Vector-valued ergodic theorems for multiparameter additive processes},
     journal = {Colloquium Mathematicum},
     pages = {193--202},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-79-2-193-202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-193-202/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - Vector-valued ergodic theorems for multiparameter additive processes
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 193
EP  - 202
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-193-202/
DO  - 10.4064/cm-79-2-193-202
LA  - en
ID  - 10_4064_cm_79_2_193_202
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T Vector-valued ergodic theorems for multiparameter additive processes
%J Colloquium Mathematicum
%D 1999
%P 193-202
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-193-202/
%R 10.4064/cm-79-2-193-202
%G en
%F 10_4064_cm_79_2_193_202
Ryotaro Sato. Vector-valued ergodic theorems for multiparameter additive processes. Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 193-202. doi : 10.4064/cm-79-2-193-202. http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-193-202/

Cité par Sources :