Vector-valued ergodic theorems for multiparameter additive processes
Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 193-202
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T={T(u):u=($u_{1}$, ... ,$u_{d})$, $u_{i}$ ≥ 0, 1 ≤ i ≤ d } be a strongly measurable d-parameter semigroup of linear contractions on $L_{1}$((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on $L_{1}$((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ $L_{1}$((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in $L_{1}$((Ω,Σ,μ);X) with respect to the semigroup T.
@article{10_4064_cm_79_2_193_202,
author = {Ryotaro Sato},
title = {Vector-valued ergodic theorems for multiparameter additive processes},
journal = {Colloquium Mathematicum},
pages = {193--202},
year = {1999},
volume = {79},
number = {2},
doi = {10.4064/cm-79-2-193-202},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-193-202/}
}
TY - JOUR AU - Ryotaro Sato TI - Vector-valued ergodic theorems for multiparameter additive processes JO - Colloquium Mathematicum PY - 1999 SP - 193 EP - 202 VL - 79 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-193-202/ DO - 10.4064/cm-79-2-193-202 LA - en ID - 10_4064_cm_79_2_193_202 ER -
Ryotaro Sato. Vector-valued ergodic theorems for multiparameter additive processes. Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 193-202. doi: 10.4064/cm-79-2-193-202
Cité par Sources :