A remark on a modified Szász-Mirakjan operator
Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 157-160
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that, for a sequence of positive numbers δ(n), if $n^{1/2}δ(n)\not\to\infty$ as $n\to\infty$, to guarantee that the modified Szász-Mirakjan operators $S_{n,δ}(f,x)$ converge to f(x) at every point, f must be identically zero.
Mots-clés :
modified Szász-Mirakjan operator
Affiliations des auteurs :
Guanzhen Zhou 1 ; Songping Zhou 1
@article{10_4064_cm_79_2_157_160,
author = {Guanzhen Zhou and Songping Zhou},
title = {A remark on a modified {Sz\'asz-Mirakjan} operator},
journal = {Colloquium Mathematicum},
pages = {157--160},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {1999},
doi = {10.4064/cm-79-2-157-160},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-157-160/}
}
TY - JOUR AU - Guanzhen Zhou AU - Songping Zhou TI - A remark on a modified Szász-Mirakjan operator JO - Colloquium Mathematicum PY - 1999 SP - 157 EP - 160 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-157-160/ DO - 10.4064/cm-79-2-157-160 LA - de ID - 10_4064_cm_79_2_157_160 ER -
Guanzhen Zhou; Songping Zhou. A remark on a modified Szász-Mirakjan operator. Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 157-160. doi: 10.4064/cm-79-2-157-160
Cité par Sources :