A remark on a modified Szász-Mirakjan operator
Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 157-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that, for a sequence of positive numbers δ(n), if $n^{1/2}δ(n)\not\to\infty$ as $n\to\infty$, to guarantee that the modified Szász-Mirakjan operators $S_{n,δ}(f,x)$ converge to f(x) at every point, f must be identically zero.
DOI : 10.4064/cm-79-2-157-160
Mots-clés : modified Szász-Mirakjan operator

Guanzhen Zhou 1 ; Songping Zhou 1

1
@article{10_4064_cm_79_2_157_160,
     author = {Guanzhen Zhou and Songping Zhou},
     title = {A remark on a modified {Sz\'asz-Mirakjan} operator},
     journal = {Colloquium Mathematicum},
     pages = {157--160},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1999},
     doi = {10.4064/cm-79-2-157-160},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-157-160/}
}
TY  - JOUR
AU  - Guanzhen Zhou
AU  - Songping Zhou
TI  - A remark on a modified Szász-Mirakjan operator
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 157
EP  - 160
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-157-160/
DO  - 10.4064/cm-79-2-157-160
LA  - de
ID  - 10_4064_cm_79_2_157_160
ER  - 
%0 Journal Article
%A Guanzhen Zhou
%A Songping Zhou
%T A remark on a modified Szász-Mirakjan operator
%J Colloquium Mathematicum
%D 1999
%P 157-160
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-157-160/
%R 10.4064/cm-79-2-157-160
%G de
%F 10_4064_cm_79_2_157_160
Guanzhen Zhou; Songping Zhou. A remark on a modified Szász-Mirakjan operator. Colloquium Mathematicum, Tome 79 (1999) no. 2, pp. 157-160. doi : 10.4064/cm-79-2-157-160. http://geodesic.mathdoc.fr/articles/10.4064/cm-79-2-157-160/

Cité par Sources :