Isometric immersions of the hyperbolic space $H^n(-1)$ into $H^{n+1}(-1)$
Colloquium Mathematicum, Tome 79 (1999) no. 1, pp. 17-23
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We transform the problem of determining isometric immersions from $H^n(-1)$ into $H^{n+1}(-1)$ into that of solving equations of degenerate Monge-Ampère type on the unit ball $B^n(1)$. By presenting one family of special solutions to the equations, we obtain a great many noncongruent examples of such isometric immersions with or without umbilic set.
Keywords:
isometric immersion, Monge-Ampère type equation, hyperbolic space
Affiliations des auteurs :
Ze-Jun Hu 1
@article{10_4064_cm_79_1_17_23,
author = {Ze-Jun Hu},
title = {Isometric immersions of the hyperbolic space $H^n(-1)$ into $H^{n+1}(-1)$},
journal = {Colloquium Mathematicum},
pages = {17--23},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {1999},
doi = {10.4064/cm-79-1-17-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-1-17-23/}
}
TY - JOUR
AU - Ze-Jun Hu
TI - Isometric immersions of the hyperbolic space $H^n(-1)$ into $H^{n+1}(-1)$
JO - Colloquium Mathematicum
PY - 1999
SP - 17
EP - 23
VL - 79
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-1-17-23/
DO - 10.4064/cm-79-1-17-23
LA - en
ID - 10_4064_cm_79_1_17_23
ER -
Ze-Jun Hu. Isometric immersions of the hyperbolic space $H^n(-1)$ into $H^{n+1}(-1)$. Colloquium Mathematicum, Tome 79 (1999) no. 1, pp. 17-23. doi: 10.4064/cm-79-1-17-23
Cité par Sources :