Algebras whose Euler form is non-negative
Colloquium Mathematicum, Tome 79 (1999) no. 1, pp. 119-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-79-1-119-131

M. Barot 1 ; J. de la Peña 1

1
@article{10_4064_cm_79_1_119_131,
     author = {M. Barot and J. de la Pe\~na},
     title = {Algebras whose {Euler} form is non-negative},
     journal = {Colloquium Mathematicum},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {1999},
     doi = {10.4064/cm-79-1-119-131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-79-1-119-131/}
}
TY  - JOUR
AU  - M. Barot
AU  - J. de la Peña
TI  - Algebras whose Euler form is non-negative
JO  - Colloquium Mathematicum
PY  - 1999
SP  - 119
EP  - 131
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-79-1-119-131/
DO  - 10.4064/cm-79-1-119-131
LA  - en
ID  - 10_4064_cm_79_1_119_131
ER  - 
%0 Journal Article
%A M. Barot
%A J. de la Peña
%T Algebras whose Euler form is non-negative
%J Colloquium Mathematicum
%D 1999
%P 119-131
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-79-1-119-131/
%R 10.4064/cm-79-1-119-131
%G en
%F 10_4064_cm_79_1_119_131
M. Barot; J. de la Peña. Algebras whose Euler form is non-negative. Colloquium Mathematicum, Tome 79 (1999) no. 1, pp. 119-131. doi : 10.4064/cm-79-1-119-131. http://geodesic.mathdoc.fr/articles/10.4064/cm-79-1-119-131/

Cité par Sources :