On the isoperimetry of graphs with many ends
Colloquium Mathematicum, Tome 78 (1998) no. 2, pp. 307-318.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a connected graph with uniformly bounded degree. We show that if there is a radius r such that, by removing from X any ball of radius r, we get at least three unbounded connected components, then X satisfies a strong isoperimetric inequality. In particular, the non-reduced $l^2$-cohomology of X coincides with the reduced $l^2$-cohomology of X and is of uncountable dimension. (Those facts are well known when X is the Cayley graph of a finitely generated group with infinitely many ends.)
DOI : 10.4064/cm-78-2-307-318

Christophe Pittet 1

1
@article{10_4064_cm_78_2_307_318,
     author = {Christophe Pittet},
     title = {On the isoperimetry of graphs with many ends},
     journal = {Colloquium Mathematicum},
     pages = {307--318},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1998},
     doi = {10.4064/cm-78-2-307-318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-307-318/}
}
TY  - JOUR
AU  - Christophe Pittet
TI  - On the isoperimetry of graphs with many ends
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 307
EP  - 318
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-307-318/
DO  - 10.4064/cm-78-2-307-318
LA  - en
ID  - 10_4064_cm_78_2_307_318
ER  - 
%0 Journal Article
%A Christophe Pittet
%T On the isoperimetry of graphs with many ends
%J Colloquium Mathematicum
%D 1998
%P 307-318
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-307-318/
%R 10.4064/cm-78-2-307-318
%G en
%F 10_4064_cm_78_2_307_318
Christophe Pittet. On the isoperimetry of graphs with many ends. Colloquium Mathematicum, Tome 78 (1998) no. 2, pp. 307-318. doi : 10.4064/cm-78-2-307-318. http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-307-318/

Cité par Sources :