Discontinuous quasilinear elliptic problems at resonance
Colloquium Mathematicum, Tome 78 (1998) no. 2, pp. 213-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper we study a quasilinear resonant problem with discontinuous right hand side. To develop an existence theory we pass to a multivalued version of the problem, by filling in the gaps at the discontinuity points. We prove the existence of a nontrivial solution using a variational approach based on the critical point theory of nonsmooth locally Lipschitz functionals.
Keywords:
compact embedding, Poincaré's inequality, Palais-Smale condition, critical point, variational method, Mountain Pass Theorem, subdifferential, problems at resonance, locally Lipschitz functional
Affiliations des auteurs :
Nikolaos Kourogenis 1 ; Nikolaos Papageorgiou 1
@article{10_4064_cm_78_2_213_223,
author = {Nikolaos Kourogenis and Nikolaos Papageorgiou},
title = {Discontinuous quasilinear elliptic problems at resonance},
journal = {Colloquium Mathematicum},
pages = {213--223},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {1998},
doi = {10.4064/cm-78-2-213-223},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-213-223/}
}
TY - JOUR AU - Nikolaos Kourogenis AU - Nikolaos Papageorgiou TI - Discontinuous quasilinear elliptic problems at resonance JO - Colloquium Mathematicum PY - 1998 SP - 213 EP - 223 VL - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-213-223/ DO - 10.4064/cm-78-2-213-223 LA - en ID - 10_4064_cm_78_2_213_223 ER -
%0 Journal Article %A Nikolaos Kourogenis %A Nikolaos Papageorgiou %T Discontinuous quasilinear elliptic problems at resonance %J Colloquium Mathematicum %D 1998 %P 213-223 %V 78 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-78-2-213-223/ %R 10.4064/cm-78-2-213-223 %G en %F 10_4064_cm_78_2_213_223
Nikolaos Kourogenis; Nikolaos Papageorgiou. Discontinuous quasilinear elliptic problems at resonance. Colloquium Mathematicum, Tome 78 (1998) no. 2, pp. 213-223. doi: 10.4064/cm-78-2-213-223
Cité par Sources :