Some Remarks on Rational Müntz Approximation on [0,∞)
Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 233-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The following result is proved in the present paper: Let ${λ_{n}}$ be an increasing sequence of distinct real numbers which approaches a finite limit λ as n goes to infinity and for which $$ \limsup_{n\to\infty}(λ-λ_{n})\root{3}οf{n}=\infty. $$ Then the rational combinations of ${x^{λ_{n}}}$ form a dense set in $C_{[0,∞]}$. One could note that the method used in this paper is probably more interesting than the result itself.
@article{10_4064_cm_77_2_233_243,
author = {S. Zhou},
title = {Some {Remarks} on {Rational} {M\"untz} {Approximation} on [0,\ensuremath{\infty})},
journal = {Colloquium Mathematicum},
pages = {233--243},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {1998},
doi = {10.4064/cm-77-2-233-243},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-233-243/}
}
TY - JOUR AU - S. Zhou TI - Some Remarks on Rational Müntz Approximation on [0,∞) JO - Colloquium Mathematicum PY - 1998 SP - 233 EP - 243 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-233-243/ DO - 10.4064/cm-77-2-233-243 LA - en ID - 10_4064_cm_77_2_233_243 ER -
S. Zhou. Some Remarks on Rational Müntz Approximation on [0,∞). Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 233-243. doi: 10.4064/cm-77-2-233-243
Cité par Sources :