Some Remarks on Rational Müntz Approximation on [0,∞)
Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 233-243.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following result is proved in the present paper: Let ${λ_{n}}$ be an increasing sequence of distinct real numbers which approaches a finite limit λ as n goes to infinity and for which $$ \limsup_{n\to\infty}(λ-λ_{n})\root{3}οf{n}=\infty. $$ Then the rational combinations of ${x^{λ_{n}}}$ form a dense set in $C_{[0,∞]}$. One could note that the method used in this paper is probably more interesting than the result itself.
DOI : 10.4064/cm-77-2-233-243

S. Zhou 1

1
@article{10_4064_cm_77_2_233_243,
     author = {S. Zhou},
     title = {Some {Remarks} on {Rational} {M\"untz} {Approximation} on [0,\ensuremath{\infty})},
     journal = {Colloquium Mathematicum},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1998},
     doi = {10.4064/cm-77-2-233-243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-233-243/}
}
TY  - JOUR
AU  - S. Zhou
TI  - Some Remarks on Rational Müntz Approximation on [0,∞)
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 233
EP  - 243
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-233-243/
DO  - 10.4064/cm-77-2-233-243
LA  - en
ID  - 10_4064_cm_77_2_233_243
ER  - 
%0 Journal Article
%A S. Zhou
%T Some Remarks on Rational Müntz Approximation on [0,∞)
%J Colloquium Mathematicum
%D 1998
%P 233-243
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-233-243/
%R 10.4064/cm-77-2-233-243
%G en
%F 10_4064_cm_77_2_233_243
S. Zhou. Some Remarks on Rational Müntz Approximation on [0,∞). Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 233-243. doi : 10.4064/cm-77-2-233-243. http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-233-243/

Cité par Sources :