Functions characterized by images of sets
Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 211-232.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For non-empty topological spaces X and Y and arbitrary families $\cal A$$\cal P(X)$ and $\cal B ⊆ \cal P(Y)$ we put $\cal C_{\cal A,\cal B}$={f ∈ $Y^X$ : (∀ A ∈ $\cal A$)(f[A] ∈ $\cal B)$}. We examine which classes of functions $\cal F$$Y^X$ can be represented as $\cal C_{\cal A,\cal B}$. We are mainly interested in the case when $\cal F=\cal C(X,Y)$ is the class of all continuous functions from X into Y. We prove that for a non-discrete Tikhonov space X the class $\cal F=\cal C$(X,ℝ) is not equal to $\cal C_{\cal A,\cal B}$ for any $\cal A$$\cal P(X)$ and $\cal B$$\cal P$(ℝ). Thus, $\cal C$(X,ℝ) cannot be characterized by images of sets. We also show that none of the following classes of real functions can be represented as $\cal C_{\cal A,\cal B}$: upper (lower) semicontinuous functions, derivatives, approximately continuous functions, Baire class 1 functions, Borel functions, and measurable functions.
DOI : 10.4064/cm-77-2-211-232
Keywords: continuous function, strongly rigid family of spaces, upper or lower semicontinuous function, Tikhonov space, derivative, Borel function, Baire class 1 function, Cook continuum, measurable function, approximately continuous function, functionally Hausdorff space

Krzysztof Ciesielski 1 ; Dikran Dikrajan 1 ; Stephen Watson 1

1
@article{10_4064_cm_77_2_211_232,
     author = {Krzysztof Ciesielski and Dikran Dikrajan and Stephen Watson},
     title = {Functions characterized by images of sets},
     journal = {Colloquium Mathematicum},
     pages = {211--232},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1998},
     doi = {10.4064/cm-77-2-211-232},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-211-232/}
}
TY  - JOUR
AU  - Krzysztof Ciesielski
AU  - Dikran Dikrajan
AU  - Stephen Watson
TI  - Functions characterized by images of sets
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 211
EP  - 232
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-211-232/
DO  - 10.4064/cm-77-2-211-232
LA  - en
ID  - 10_4064_cm_77_2_211_232
ER  - 
%0 Journal Article
%A Krzysztof Ciesielski
%A Dikran Dikrajan
%A Stephen Watson
%T Functions characterized by images of sets
%J Colloquium Mathematicum
%D 1998
%P 211-232
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-211-232/
%R 10.4064/cm-77-2-211-232
%G en
%F 10_4064_cm_77_2_211_232
Krzysztof Ciesielski; Dikran Dikrajan; Stephen Watson. Functions characterized by images of sets. Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 211-232. doi : 10.4064/cm-77-2-211-232. http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-211-232/

Cité par Sources :