Subdirect decompositions of algebras from 2-clone extensions of varieties
Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 189-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let τ:F → ℕ be a type of algebras, where F is a set of fundamental operation symbols and ℕ is the set of nonnegative integers. We assume that |F|≥2 and 0 ∉ (F). For a term φ of type τ we denote by F(φ) the set of fundamental operation symbols from F occurring in φ. An identity φ ≉ ψ of type τ is called clone compatible if φ and ψ are the same variable or F(φ)=F(ψ)≠$\emptyset$. For a variety V of type τ we denote by $V^{c,2}$ the variety of type τ defined by all identities φ ≉ ψ from Id(V) which are either clone compatible or |F(φ)|, |F(ψ)|≥2. Under some assumption on terms (condition (0.iii)) we show that an algebra ${\gt A}$ belongs to $V^{c,2}$ iff it is isomorphic to a subdirect product of an algebra from V and of some other algebras of very simple structure. This result is applied to finding subdirectly irreducible algebras in $V^{c,2}$ where V is the variety of distributive lattices or the variety of Boolean algebras.
Keywords:
lattice, varieties, subdirectly irreducible algebra, Boolean algebra, clone extension of a variety, subdirect product
Affiliations des auteurs :
J. Płonka 1
@article{10_4064_cm_77_2_189_199,
author = {J. P{\l}onka},
title = {Subdirect decompositions of algebras from 2-clone extensions of varieties},
journal = {Colloquium Mathematicum},
pages = {189--199},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {1998},
doi = {10.4064/cm-77-2-189-199},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/}
}
TY - JOUR AU - J. Płonka TI - Subdirect decompositions of algebras from 2-clone extensions of varieties JO - Colloquium Mathematicum PY - 1998 SP - 189 EP - 199 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/ DO - 10.4064/cm-77-2-189-199 LA - en ID - 10_4064_cm_77_2_189_199 ER -
%0 Journal Article %A J. Płonka %T Subdirect decompositions of algebras from 2-clone extensions of varieties %J Colloquium Mathematicum %D 1998 %P 189-199 %V 77 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/ %R 10.4064/cm-77-2-189-199 %G en %F 10_4064_cm_77_2_189_199
J. Płonka. Subdirect decompositions of algebras from 2-clone extensions of varieties. Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 189-199. doi: 10.4064/cm-77-2-189-199
Cité par Sources :