Subdirect decompositions of algebras from 2-clone extensions of varieties
Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 189-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let τ:F → ℕ be a type of algebras, where F is a set of fundamental operation symbols and ℕ is the set of nonnegative integers. We assume that |F|≥2 and 0 ∉ (F). For a term φ of type τ we denote by F(φ) the set of fundamental operation symbols from F occurring in φ. An identity φ ≉ ψ of type τ is called clone compatible if φ and ψ are the same variable or F(φ)=F(ψ)≠$\emptyset$. For a variety V of type τ we denote by $V^{c,2}$ the variety of type τ defined by all identities φ ≉ ψ from Id(V) which are either clone compatible or |F(φ)|, |F(ψ)|≥2. Under some assumption on terms (condition (0.iii)) we show that an algebra ${\gt A}$ belongs to $V^{c,2}$ iff it is isomorphic to a subdirect product of an algebra from V and of some other algebras of very simple structure. This result is applied to finding subdirectly irreducible algebras in $V^{c,2}$ where V is the variety of distributive lattices or the variety of Boolean algebras.
DOI : 10.4064/cm-77-2-189-199
Keywords: lattice, varieties, subdirectly irreducible algebra, Boolean algebra, clone extension of a variety, subdirect product

J. Płonka 1

1
@article{10_4064_cm_77_2_189_199,
     author = {J. P{\l}onka},
     title = {Subdirect decompositions of algebras from 2-clone extensions of varieties},
     journal = {Colloquium Mathematicum},
     pages = {189--199},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1998},
     doi = {10.4064/cm-77-2-189-199},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/}
}
TY  - JOUR
AU  - J. Płonka
TI  - Subdirect decompositions of algebras from 2-clone extensions of varieties
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 189
EP  - 199
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/
DO  - 10.4064/cm-77-2-189-199
LA  - en
ID  - 10_4064_cm_77_2_189_199
ER  - 
%0 Journal Article
%A J. Płonka
%T Subdirect decompositions of algebras from 2-clone extensions of varieties
%J Colloquium Mathematicum
%D 1998
%P 189-199
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/
%R 10.4064/cm-77-2-189-199
%G en
%F 10_4064_cm_77_2_189_199
J. Płonka. Subdirect decompositions of algebras from 2-clone extensions of varieties. Colloquium Mathematicum, Tome 77 (1998) no. 2, pp. 189-199. doi : 10.4064/cm-77-2-189-199. http://geodesic.mathdoc.fr/articles/10.4064/cm-77-2-189-199/

Cité par Sources :