Equimorphy in varieties of double Heyting algebras
Colloquium Mathematicum, Tome 77 (1998) no. 1, pp. 41-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that any finitely generated variety V of double Heyting algebras is finitely determined, meaning that for some finite cardinal n(V), any class $\Cal S$ ⊆ V consisting of algebras with pairwise isomorphic endomorphism monoids has fewer than n(V) pairwise non-isomorphic members. This result complements the earlier established fact of categorical universality of the variety of all double Heyting algebras, and contrasts with categorical results concerning finitely generated varieties of distributive double p-algebras.
Keywords:
categorical universality, variety, double Heyting algebra, endomorphism monoid, equimorphy
Affiliations des auteurs :
V. Koubek 1 ; J. Sichler 1
@article{10_4064_cm_77_1_41_58,
author = {V. Koubek and J. Sichler},
title = {Equimorphy in varieties of double {Heyting} algebras},
journal = {Colloquium Mathematicum},
pages = {41--58},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {1998},
doi = {10.4064/cm-77-1-41-58},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-41-58/}
}
TY - JOUR AU - V. Koubek AU - J. Sichler TI - Equimorphy in varieties of double Heyting algebras JO - Colloquium Mathematicum PY - 1998 SP - 41 EP - 58 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-77-1-41-58/ DO - 10.4064/cm-77-1-41-58 LA - en ID - 10_4064_cm_77_1_41_58 ER -
V. Koubek; J. Sichler. Equimorphy in varieties of double Heyting algebras. Colloquium Mathematicum, Tome 77 (1998) no. 1, pp. 41-58. doi: 10.4064/cm-77-1-41-58
Cité par Sources :