On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes
Colloquium Mathematicum, Tome 76 (1998) no. 2, pp. 213-228
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let ξ be an oriented 8-dimensional spin vector bundle over an 8-complex. In this paper we give necessary and sufficient conditions for ξ to have 4 linearly independent sections or to be a sum of two 4-dimensional spin vector bundles, in terms of characteristic classes and higher order cohomology operations. On closed connected spin smooth 8-manifolds these operations can be computed.
Keywords:
classifying spaces for groups, vector bundle, higher order cohomology operations, characteristic classes, Postnikov tower, distribution
Affiliations des auteurs :
Martin Čadek 1 ; Jiří Vanžura 1
@article{10_4064_cm_76_2_213_228,
author = {Martin \v{C}adek and Ji\v{r}{\'\i} Van\v{z}ura},
title = {On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes},
journal = {Colloquium Mathematicum},
pages = {213--228},
year = {1998},
volume = {76},
number = {2},
doi = {10.4064/cm-76-2-213-228},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-213-228/}
}
TY - JOUR AU - Martin Čadek AU - Jiří Vanžura TI - On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes JO - Colloquium Mathematicum PY - 1998 SP - 213 EP - 228 VL - 76 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-213-228/ DO - 10.4064/cm-76-2-213-228 LA - en ID - 10_4064_cm_76_2_213_228 ER -
%0 Journal Article %A Martin Čadek %A Jiří Vanžura %T On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes %J Colloquium Mathematicum %D 1998 %P 213-228 %V 76 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-213-228/ %R 10.4064/cm-76-2-213-228 %G en %F 10_4064_cm_76_2_213_228
Martin Čadek; Jiří Vanžura. On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes. Colloquium Mathematicum, Tome 76 (1998) no. 2, pp. 213-228. doi: 10.4064/cm-76-2-213-228
Cité par Sources :