On normal numbers mod $2$
Colloquium Mathematicum, Tome 76 (1998) no. 2, pp. 161-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that a real-valued function $f(x)=\exp(\pi i \chi_I(x))$, where I is an interval contained in [0,1), is not of the form $f(x)=\overline{q(2x)}q(x)$ with |q(x)|=1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.
DOI : 10.4064/cm-76-2-161-170
Keywords: coboundary, metric density, normal number, uniform distribution

Youngho Ahn 1 ; Geon Choe 1

1
@article{10_4064_cm_76_2_161_170,
     author = {Youngho Ahn and Geon Choe},
     title = {On normal numbers mod $2$},
     journal = {Colloquium Mathematicum},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1998},
     doi = {10.4064/cm-76-2-161-170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-161-170/}
}
TY  - JOUR
AU  - Youngho Ahn
AU  - Geon Choe
TI  - On normal numbers mod $2$
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 161
EP  - 170
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-161-170/
DO  - 10.4064/cm-76-2-161-170
LA  - en
ID  - 10_4064_cm_76_2_161_170
ER  - 
%0 Journal Article
%A Youngho Ahn
%A Geon Choe
%T On normal numbers mod $2$
%J Colloquium Mathematicum
%D 1998
%P 161-170
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-161-170/
%R 10.4064/cm-76-2-161-170
%G en
%F 10_4064_cm_76_2_161_170
Youngho Ahn; Geon Choe. On normal numbers mod $2$. Colloquium Mathematicum, Tome 76 (1998) no. 2, pp. 161-170. doi : 10.4064/cm-76-2-161-170. http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-161-170/

Cité par Sources :