On normal numbers mod $2$
Colloquium Mathematicum, Tome 76 (1998) no. 2, pp. 161-170
It is proved that a real-valued function $f(x)=\exp(\pi i \chi_I(x))$, where I is an interval contained in [0,1), is not of the form $f(x)=\overline{q(2x)}q(x)$ with |q(x)|=1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.
Keywords:
coboundary, metric density, normal number, uniform distribution
@article{10_4064_cm_76_2_161_170,
author = {Youngho Ahn and Geon Choe},
title = {On normal numbers mod $2$},
journal = {Colloquium Mathematicum},
pages = {161--170},
year = {1998},
volume = {76},
number = {2},
doi = {10.4064/cm-76-2-161-170},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-2-161-170/}
}
Youngho Ahn; Geon Choe. On normal numbers mod $2$. Colloquium Mathematicum, Tome 76 (1998) no. 2, pp. 161-170. doi: 10.4064/cm-76-2-161-170
Cité par Sources :