Endpoint bounds for convolution operators with singular measures
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $S\subset \R^{n+1}$ be the graph of the function $\varphi:[ -1,1]^n\rightarrow \R $ defined by $\varphi ( x_1,\dots,x_n) =\sum_{j=1}^n| x_j|^{\beta_j},$ with 1$\beta_1\leq \dots \leq \beta_n,$ and let $\mu $ the measure on $\R^{n+1}$ induced by the Euclidean area measure on S. In this paper we characterize the set of pairs (p,q) such that the convolution operator with $\mu $ is $L^p$-$L^q$ bounded.
DOI : 10.4064/cm-76-1-35-47

E. Ferreyra 1 ; T. Godoy 1 ; M. Urciuolo 1

1
@article{10_4064_cm_76_1_35_47,
     author = {E. Ferreyra and T. Godoy and M. Urciuolo},
     title = {Endpoint bounds for convolution operators with singular measures},
     journal = {Colloquium Mathematicum},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-76-1-35-47},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-35-47/}
}
TY  - JOUR
AU  - E. Ferreyra
AU  - T. Godoy
AU  - M. Urciuolo
TI  - Endpoint bounds for convolution operators with singular measures
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 35
EP  - 47
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-35-47/
DO  - 10.4064/cm-76-1-35-47
LA  - en
ID  - 10_4064_cm_76_1_35_47
ER  - 
%0 Journal Article
%A E. Ferreyra
%A T. Godoy
%A M. Urciuolo
%T Endpoint bounds for convolution operators with singular measures
%J Colloquium Mathematicum
%D 1998
%P 35-47
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-35-47/
%R 10.4064/cm-76-1-35-47
%G en
%F 10_4064_cm_76_1_35_47
E. Ferreyra; T. Godoy; M. Urciuolo. Endpoint bounds for convolution operators with singular measures. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 35-47. doi : 10.4064/cm-76-1-35-47. http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-35-47/

Cité par Sources :