A note on the diophantine equation ${k\choose 2}-1=q^n+1$
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 31-34
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this note we prove that the equation ${k\choose 2}-1=q^n+1$, $q\ge 2, n\ge 3$, has only finitely many positive integer solutions $(k,q,n)$. Moreover, all solutions $(k,q,n)$ satisfy $k\lt10^{10^{182}}$, $q\lt10^{10^{165}}$ and $n\lt 2\cdot 10^{17}$.
@article{10_4064_cm_76_1_31_34,
author = {Maohua Le},
title = {A note on the diophantine equation ${k\choose 2}-1=q^n+1$},
journal = {Colloquium Mathematicum},
pages = {31--34},
year = {1998},
volume = {76},
number = {1},
doi = {10.4064/cm-76-1-31-34},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-31-34/}
}
Maohua Le. A note on the diophantine equation ${k\choose 2}-1=q^n+1$. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 31-34. doi: 10.4064/cm-76-1-31-34
Cité par Sources :