A note on the diophantine equation ${k\choose 2}-1=q^n+1$
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 31-34.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this note we prove that the equation ${k\choose 2}-1=q^n+1$, $q\ge 2, n\ge 3$, has only finitely many positive integer solutions $(k,q,n)$. Moreover, all solutions $(k,q,n)$ satisfy $k\lt10^{10^{182}}$, $q\lt10^{10^{165}}$ and $n\lt 2\cdot 10^{17}$.
DOI : 10.4064/cm-76-1-31-34

Maohua Le 1

1
@article{10_4064_cm_76_1_31_34,
     author = {Maohua Le},
     title = {A note on the diophantine equation ${k\choose 2}-1=q^n+1$},
     journal = {Colloquium Mathematicum},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-76-1-31-34},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-31-34/}
}
TY  - JOUR
AU  - Maohua Le
TI  - A note on the diophantine equation ${k\choose 2}-1=q^n+1$
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 31
EP  - 34
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-31-34/
DO  - 10.4064/cm-76-1-31-34
LA  - en
ID  - 10_4064_cm_76_1_31_34
ER  - 
%0 Journal Article
%A Maohua Le
%T A note on the diophantine equation ${k\choose 2}-1=q^n+1$
%J Colloquium Mathematicum
%D 1998
%P 31-34
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-31-34/
%R 10.4064/cm-76-1-31-34
%G en
%F 10_4064_cm_76_1_31_34
Maohua Le. A note on the diophantine equation ${k\choose 2}-1=q^n+1$. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 31-34. doi : 10.4064/cm-76-1-31-34. http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-31-34/

Cité par Sources :