On a Theorem of Mierczyński
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 19-29
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the initial value problem x'(t) = f(t,x(t)), $x(0) = x_1$ is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.
@article{10_4064_cm_76_1_19_29,
author = {Gerd Herzog},
title = {On a {Theorem} of {Mierczy\'nski}},
journal = {Colloquium Mathematicum},
pages = {19--29},
year = {1998},
volume = {76},
number = {1},
doi = {10.4064/cm-76-1-19-29},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-19-29/}
}
Gerd Herzog. On a Theorem of Mierczyński. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 19-29. doi: 10.4064/cm-76-1-19-29
Cité par Sources :