On a Theorem of Mierczyński
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 19-29.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the initial value problem x'(t) = f(t,x(t)), $x(0) = x_1$ is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.
DOI : 10.4064/cm-76-1-19-29

Gerd Herzog 1

1
@article{10_4064_cm_76_1_19_29,
     author = {Gerd Herzog},
     title = {On a {Theorem} of {Mierczy\'nski}},
     journal = {Colloquium Mathematicum},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-76-1-19-29},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-19-29/}
}
TY  - JOUR
AU  - Gerd Herzog
TI  - On a Theorem of Mierczyński
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 19
EP  - 29
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-19-29/
DO  - 10.4064/cm-76-1-19-29
LA  - pl
ID  - 10_4064_cm_76_1_19_29
ER  - 
%0 Journal Article
%A Gerd Herzog
%T On a Theorem of Mierczyński
%J Colloquium Mathematicum
%D 1998
%P 19-29
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-19-29/
%R 10.4064/cm-76-1-19-29
%G pl
%F 10_4064_cm_76_1_19_29
Gerd Herzog. On a Theorem of Mierczyński. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 19-29. doi : 10.4064/cm-76-1-19-29. http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-19-29/

Cité par Sources :