Exact Neumann boundary controllability for second order hyperbolic equations
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 117-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in $L^2({\mit\Omega})\times (H^1({\mit\Omega}))'$ and we derive estimates for the control time T.
DOI : 10.4064/cm-76-1-117-142
Keywords: Neumann boundary condition, HUM, exact controllability, second order hyperbolic equation

Weijiu Liu 1 ; Graham Williams 1

1
@article{10_4064_cm_76_1_117_142,
     author = {Weijiu Liu and Graham Williams},
     title = {Exact {Neumann} boundary controllability for second order hyperbolic equations},
     journal = {Colloquium Mathematicum},
     pages = {117--142},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-76-1-117-142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/}
}
TY  - JOUR
AU  - Weijiu Liu
AU  - Graham Williams
TI  - Exact Neumann boundary controllability for second order hyperbolic equations
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 117
EP  - 142
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/
DO  - 10.4064/cm-76-1-117-142
LA  - en
ID  - 10_4064_cm_76_1_117_142
ER  - 
%0 Journal Article
%A Weijiu Liu
%A Graham Williams
%T Exact Neumann boundary controllability for second order hyperbolic equations
%J Colloquium Mathematicum
%D 1998
%P 117-142
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/
%R 10.4064/cm-76-1-117-142
%G en
%F 10_4064_cm_76_1_117_142
Weijiu Liu; Graham Williams. Exact Neumann boundary controllability for second order hyperbolic equations. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 117-142. doi : 10.4064/cm-76-1-117-142. http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/

Cité par Sources :