Exact Neumann boundary controllability for second order hyperbolic equations
Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 117-142
Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in $L^2({\mit\Omega})\times (H^1({\mit\Omega}))'$ and we derive estimates for the control time T.
Keywords:
Neumann boundary condition, HUM, exact controllability, second order hyperbolic equation
@article{10_4064_cm_76_1_117_142,
author = {Weijiu Liu and Graham Williams},
title = {Exact {Neumann} boundary controllability for second order hyperbolic equations},
journal = {Colloquium Mathematicum},
pages = {117--142},
year = {1998},
volume = {76},
number = {1},
doi = {10.4064/cm-76-1-117-142},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/}
}
TY - JOUR AU - Weijiu Liu AU - Graham Williams TI - Exact Neumann boundary controllability for second order hyperbolic equations JO - Colloquium Mathematicum PY - 1998 SP - 117 EP - 142 VL - 76 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/ DO - 10.4064/cm-76-1-117-142 LA - en ID - 10_4064_cm_76_1_117_142 ER -
%0 Journal Article %A Weijiu Liu %A Graham Williams %T Exact Neumann boundary controllability for second order hyperbolic equations %J Colloquium Mathematicum %D 1998 %P 117-142 %V 76 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-76-1-117-142/ %R 10.4064/cm-76-1-117-142 %G en %F 10_4064_cm_76_1_117_142
Weijiu Liu; Graham Williams. Exact Neumann boundary controllability for second order hyperbolic equations. Colloquium Mathematicum, Tome 76 (1998) no. 1, pp. 117-142. doi: 10.4064/cm-76-1-117-142
Cité par Sources :