Rank additivity for quasi-tilted algebras of canonical type
Colloquium Mathematicum, Tome 75 (1998) no. 2, pp. 183-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given the category $\coh\sym{X}$ of coherent sheaves over a weighted projective line $\sym{X}=\sym{X}(\und{\lambda},\und{p})$ (of any representation type), the endomorphism ring $\mit\Sigma = \End(\cal{T})$ of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes over $\coh\sym{X}$ (Example 4.3).
DOI : 10.4064/cm-75-2-183-193

Thomas Hübner 1

1
@article{10_4064_cm_75_2_183_193,
     author = {Thomas H\"ubner},
     title = {Rank additivity for quasi-tilted algebras of canonical type},
     journal = {Colloquium Mathematicum},
     pages = {183--193},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1998},
     doi = {10.4064/cm-75-2-183-193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-183-193/}
}
TY  - JOUR
AU  - Thomas Hübner
TI  - Rank additivity for quasi-tilted algebras of canonical type
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 183
EP  - 193
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-183-193/
DO  - 10.4064/cm-75-2-183-193
LA  - en
ID  - 10_4064_cm_75_2_183_193
ER  - 
%0 Journal Article
%A Thomas Hübner
%T Rank additivity for quasi-tilted algebras of canonical type
%J Colloquium Mathematicum
%D 1998
%P 183-193
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-183-193/
%R 10.4064/cm-75-2-183-193
%G en
%F 10_4064_cm_75_2_183_193
Thomas Hübner. Rank additivity for quasi-tilted algebras of canonical type. Colloquium Mathematicum, Tome 75 (1998) no. 2, pp. 183-193. doi : 10.4064/cm-75-2-183-193. http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-183-193/

Cité par Sources :