Rank additivity for quasi-tilted algebras of canonical type
Colloquium Mathematicum, Tome 75 (1998) no. 2, pp. 183-193
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given the category $\coh\sym{X}$ of coherent sheaves over a weighted projective line $\sym{X}=\sym{X}(\und{\lambda},\und{p})$ (of any representation type), the endomorphism ring $\mit\Sigma = \End(\cal{T})$ of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes over $\coh\sym{X}$ (Example 4.3).
@article{10_4064_cm_75_2_183_193,
author = {Thomas H\"ubner},
title = {Rank additivity for quasi-tilted algebras of canonical type},
journal = {Colloquium Mathematicum},
pages = {183--193},
year = {1998},
volume = {75},
number = {2},
doi = {10.4064/cm-75-2-183-193},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-183-193/}
}
TY - JOUR AU - Thomas Hübner TI - Rank additivity for quasi-tilted algebras of canonical type JO - Colloquium Mathematicum PY - 1998 SP - 183 EP - 193 VL - 75 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-183-193/ DO - 10.4064/cm-75-2-183-193 LA - en ID - 10_4064_cm_75_2_183_193 ER -
Thomas Hübner. Rank additivity for quasi-tilted algebras of canonical type. Colloquium Mathematicum, Tome 75 (1998) no. 2, pp. 183-193. doi: 10.4064/cm-75-2-183-193
Cité par Sources :