On the intersection multiplicity of images under an etale morphism
Colloquium Mathematicum, Tome 75 (1998) no. 2, pp. 167-174
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present a formula for the intersection multiplicity of the images of two subvarieties under an etale morphism between smooth varieties over a field k. It is a generalization of Fulton's Example 8.2.5 from [3], where a strong additional assumption has been imposed. In a special case where the base field k is algebraically closed and a proper component of the intersection is a closed point, intersection multiplicity is an invariant of etale morphisms. This corresponds with analytic geometry where intersection multiplicity is an invariant of local biholomorphisms.
Keywords:
intersection multiplicity, multiplicity of ideals in a semilocal ring, etale morphisms, unramified morphisms, algebraic varieties
Affiliations des auteurs :
Krzysztof Nowak 1
@article{10_4064_cm_75_2_167_174,
author = {Krzysztof Nowak},
title = {On the intersection multiplicity of images under an etale morphism},
journal = {Colloquium Mathematicum},
pages = {167--174},
year = {1998},
volume = {75},
number = {2},
doi = {10.4064/cm-75-2-167-174},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-167-174/}
}
TY - JOUR AU - Krzysztof Nowak TI - On the intersection multiplicity of images under an etale morphism JO - Colloquium Mathematicum PY - 1998 SP - 167 EP - 174 VL - 75 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-75-2-167-174/ DO - 10.4064/cm-75-2-167-174 LA - en ID - 10_4064_cm_75_2_167_174 ER -
Krzysztof Nowak. On the intersection multiplicity of images under an etale morphism. Colloquium Mathematicum, Tome 75 (1998) no. 2, pp. 167-174. doi: 10.4064/cm-75-2-167-174
Cité par Sources :