On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions
Colloquium Mathematicum, Tome 75 (1998) no. 1, pp. 1-5.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a $C^k$ piecewise differentiable function that is not $C^k$ piecewise analytic and satisfies a Jackson type estimate for approximation by Lagrange interpolating polynomials associated with the extremal points of the Chebyshev polynomials.
DOI : 10.4064/cm-75-1-1-5

S. Zhou 1

1
@article{10_4064_cm_75_1_1_5,
     author = {S. Zhou},
     title = {On approximation by {Lagrange} interpolating polynomials for a subset of the space of continuous functions},
     journal = {Colloquium Mathematicum},
     pages = {1--5},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {1998},
     doi = {10.4064/cm-75-1-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/}
}
TY  - JOUR
AU  - S. Zhou
TI  - On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions
JO  - Colloquium Mathematicum
PY  - 1998
SP  - 1
EP  - 5
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/
DO  - 10.4064/cm-75-1-1-5
LA  - en
ID  - 10_4064_cm_75_1_1_5
ER  - 
%0 Journal Article
%A S. Zhou
%T On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions
%J Colloquium Mathematicum
%D 1998
%P 1-5
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/
%R 10.4064/cm-75-1-1-5
%G en
%F 10_4064_cm_75_1_1_5
S. Zhou. On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions. Colloquium Mathematicum, Tome 75 (1998) no. 1, pp. 1-5. doi : 10.4064/cm-75-1-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/

Cité par Sources :