On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions
Colloquium Mathematicum, Tome 75 (1998) no. 1, pp. 1-5
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct a $C^k$ piecewise differentiable function that is not $C^k$ piecewise analytic and satisfies a Jackson type estimate for approximation by Lagrange interpolating polynomials associated with the extremal points of the Chebyshev polynomials.
@article{10_4064_cm_75_1_1_5,
author = {S. Zhou},
title = {On approximation by {Lagrange} interpolating polynomials for a subset of the space of continuous functions},
journal = {Colloquium Mathematicum},
pages = {1--5},
publisher = {mathdoc},
volume = {75},
number = {1},
year = {1998},
doi = {10.4064/cm-75-1-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/}
}
TY - JOUR AU - S. Zhou TI - On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions JO - Colloquium Mathematicum PY - 1998 SP - 1 EP - 5 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/ DO - 10.4064/cm-75-1-1-5 LA - en ID - 10_4064_cm_75_1_1_5 ER -
%0 Journal Article %A S. Zhou %T On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions %J Colloquium Mathematicum %D 1998 %P 1-5 %V 75 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-75-1-1-5/ %R 10.4064/cm-75-1-1-5 %G en %F 10_4064_cm_75_1_1_5
S. Zhou. On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions. Colloquium Mathematicum, Tome 75 (1998) no. 1, pp. 1-5. doi: 10.4064/cm-75-1-1-5
Cité par Sources :