Heat kernels and Riesz transforms on nilpotent Lie groups
Colloquium Mathematicum, Tome 74 (1997) no. 2, pp. 191-218
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider pure mth order subcoercive operators with complex coefficients acting on a connected nilpotent Lie group. We derive Gaussian bounds with the correct small time singularity and the optimal large time asymptotic behaviour on the heat kernel and all its derivatives, both right and left. Further we prove that the Riesz transforms of all orders are bounded on the Lp -spaces with p ∈ (1, ∞). Finally, for second-order operators with real coefficients we derive matching Gaussian lower bounds and deduce Harnack inequalities valid for all times.
Affiliations des auteurs :
A. ter Elst 1 ; Derek Robinson 1 ; Adam Sikora 1
@article{10_4064_cm_74_2_191_218,
author = {A. ter Elst and Derek Robinson and Adam Sikora},
title = {Heat kernels and {Riesz} transforms on nilpotent {Lie} groups},
journal = {Colloquium Mathematicum},
pages = {191--218},
year = {1997},
volume = {74},
number = {2},
doi = {10.4064/cm-74-2-191-218},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-74-2-191-218/}
}
TY - JOUR AU - A. ter Elst AU - Derek Robinson AU - Adam Sikora TI - Heat kernels and Riesz transforms on nilpotent Lie groups JO - Colloquium Mathematicum PY - 1997 SP - 191 EP - 218 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-74-2-191-218/ DO - 10.4064/cm-74-2-191-218 LA - en ID - 10_4064_cm_74_2_191_218 ER -
%0 Journal Article %A A. ter Elst %A Derek Robinson %A Adam Sikora %T Heat kernels and Riesz transforms on nilpotent Lie groups %J Colloquium Mathematicum %D 1997 %P 191-218 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-74-2-191-218/ %R 10.4064/cm-74-2-191-218 %G en %F 10_4064_cm_74_2_191_218
A. ter Elst; Derek Robinson; Adam Sikora. Heat kernels and Riesz transforms on nilpotent Lie groups. Colloquium Mathematicum, Tome 74 (1997) no. 2, pp. 191-218. doi: 10.4064/cm-74-2-191-218
Cité par Sources :