On compact symplectic and Kählerian solvmanifolds which are not completely solvable
Colloquium Mathematicum, Tome 73 (1997) no. 2, pp. 261-283.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.
DOI : 10.4064/cm-73-2-261-283
Keywords: Kähler structure, symplectic structure, solvmanifold

Aleksy Tralle 1

1
@article{10_4064_cm_73_2_261_283,
     author = {Aleksy Tralle},
     title = {On compact symplectic and {K\"ahlerian} solvmanifolds which are not completely solvable},
     journal = {Colloquium Mathematicum},
     pages = {261--283},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {1997},
     doi = {10.4064/cm-73-2-261-283},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-73-2-261-283/}
}
TY  - JOUR
AU  - Aleksy Tralle
TI  - On compact symplectic and Kählerian solvmanifolds which are not completely solvable
JO  - Colloquium Mathematicum
PY  - 1997
SP  - 261
EP  - 283
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-73-2-261-283/
DO  - 10.4064/cm-73-2-261-283
LA  - en
ID  - 10_4064_cm_73_2_261_283
ER  - 
%0 Journal Article
%A Aleksy Tralle
%T On compact symplectic and Kählerian solvmanifolds which are not completely solvable
%J Colloquium Mathematicum
%D 1997
%P 261-283
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-73-2-261-283/
%R 10.4064/cm-73-2-261-283
%G en
%F 10_4064_cm_73_2_261_283
Aleksy Tralle. On compact symplectic and Kählerian solvmanifolds which are not completely solvable. Colloquium Mathematicum, Tome 73 (1997) no. 2, pp. 261-283. doi : 10.4064/cm-73-2-261-283. http://geodesic.mathdoc.fr/articles/10.4064/cm-73-2-261-283/

Cité par Sources :