Rough singular integral operators with Hardy space function kernels on a product domain
Colloquium Mathematicum, Tome 73 (1997) no. 1, pp. 15-23.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we introduce atomic Hardy spaces on the product domain $S^{n-1}×S^{m-1}$ and prove that rough singular integral operators with Hardy space function kernels are $L^p$ bounded on $ℝ^{n} × ℝ^{m}$. This is an extension of some well known results.
DOI : 10.4064/cm-73-1-15-23

Yong Ding 1

1
@article{10_4064_cm_73_1_15_23,
     author = {Yong Ding},
     title = {Rough singular integral operators with {Hardy} space function kernels on a product domain},
     journal = {Colloquium Mathematicum},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1997},
     doi = {10.4064/cm-73-1-15-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/}
}
TY  - JOUR
AU  - Yong Ding
TI  - Rough singular integral operators with Hardy space function kernels on a product domain
JO  - Colloquium Mathematicum
PY  - 1997
SP  - 15
EP  - 23
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/
DO  - 10.4064/cm-73-1-15-23
LA  - en
ID  - 10_4064_cm_73_1_15_23
ER  - 
%0 Journal Article
%A Yong Ding
%T Rough singular integral operators with Hardy space function kernels on a product domain
%J Colloquium Mathematicum
%D 1997
%P 15-23
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/
%R 10.4064/cm-73-1-15-23
%G en
%F 10_4064_cm_73_1_15_23
Yong Ding. Rough singular integral operators with Hardy space function kernels on a product domain. Colloquium Mathematicum, Tome 73 (1997) no. 1, pp. 15-23. doi : 10.4064/cm-73-1-15-23. http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/

Cité par Sources :