Rough singular integral operators with Hardy space function kernels on a product domain
Colloquium Mathematicum, Tome 73 (1997) no. 1, pp. 15-23
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper we introduce atomic Hardy spaces on the product domain $S^{n-1}×S^{m-1}$ and prove that rough singular integral operators with Hardy space function kernels are $L^p$ bounded on $ℝ^{n} × ℝ^{m}$. This is an extension of some well known results.
@article{10_4064_cm_73_1_15_23,
author = {Yong Ding},
title = {Rough singular integral operators with {Hardy} space function kernels on a product domain},
journal = {Colloquium Mathematicum},
pages = {15--23},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {1997},
doi = {10.4064/cm-73-1-15-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/}
}
TY - JOUR AU - Yong Ding TI - Rough singular integral operators with Hardy space function kernels on a product domain JO - Colloquium Mathematicum PY - 1997 SP - 15 EP - 23 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/ DO - 10.4064/cm-73-1-15-23 LA - en ID - 10_4064_cm_73_1_15_23 ER -
%0 Journal Article %A Yong Ding %T Rough singular integral operators with Hardy space function kernels on a product domain %J Colloquium Mathematicum %D 1997 %P 15-23 %V 73 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-15-23/ %R 10.4064/cm-73-1-15-23 %G en %F 10_4064_cm_73_1_15_23
Yong Ding. Rough singular integral operators with Hardy space function kernels on a product domain. Colloquium Mathematicum, Tome 73 (1997) no. 1, pp. 15-23. doi: 10.4064/cm-73-1-15-23
Cité par Sources :