Some nonexistence theorems on stable minimal submanifolds
Colloquium Mathematicum, Tome 73 (1997) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that there exist no stable minimal submanifolds in some n-dimensional ellipsoids, which generalizes J. Simons' result about the unit sphere and gives a partial answer to Lawson–Simons' conjecture.
DOI : 10.4064/cm-73-1-1-13

Haizhong Li 1

1
@article{10_4064_cm_73_1_1_13,
     author = {Haizhong Li},
     title = {Some nonexistence theorems on stable minimal submanifolds},
     journal = {Colloquium Mathematicum},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1997},
     doi = {10.4064/cm-73-1-1-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-1-13/}
}
TY  - JOUR
AU  - Haizhong Li
TI  - Some nonexistence theorems on stable minimal submanifolds
JO  - Colloquium Mathematicum
PY  - 1997
SP  - 1
EP  - 13
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-1-13/
DO  - 10.4064/cm-73-1-1-13
LA  - en
ID  - 10_4064_cm_73_1_1_13
ER  - 
%0 Journal Article
%A Haizhong Li
%T Some nonexistence theorems on stable minimal submanifolds
%J Colloquium Mathematicum
%D 1997
%P 1-13
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-1-13/
%R 10.4064/cm-73-1-1-13
%G en
%F 10_4064_cm_73_1_1_13
Haizhong Li. Some nonexistence theorems on stable minimal submanifolds. Colloquium Mathematicum, Tome 73 (1997) no. 1, pp. 1-13. doi : 10.4064/cm-73-1-1-13. http://geodesic.mathdoc.fr/articles/10.4064/cm-73-1-1-13/

Cité par Sources :