Topological algebras with an orthogonal total sequence
Colloquium Mathematicum, Tome 72 (1997) no. 2, pp. 215-222
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is an investigation of topological algebras with an orthogonal sequence which is total. Closed prime ideals or closed maximal ideals are kernels of multiplicative functionals and the continuous multiplicative functionals are given by the "coefficient functionals". Our main result states that an orthogonal total sequence in a unital Fréchet algebra is already a Schauder basis. Further we consider algebras with a total sequence $(x_n)_{n∈ℕ}$ satisfying $x^2_n=x_n$ and $x_n x_{n+1} = x_{n+1}$ for all n ∈ ℕ.
Keywords:
orthogonal basis, Hadamard product, topological algebra
Affiliations des auteurs :
Hermann Render 1
@article{10_4064_cm_72_2_215_222,
author = {Hermann Render},
title = {Topological algebras with an orthogonal total sequence},
journal = {Colloquium Mathematicum},
pages = {215--222},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1997},
doi = {10.4064/cm-72-2-215-222},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-72-2-215-222/}
}
TY - JOUR AU - Hermann Render TI - Topological algebras with an orthogonal total sequence JO - Colloquium Mathematicum PY - 1997 SP - 215 EP - 222 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-72-2-215-222/ DO - 10.4064/cm-72-2-215-222 LA - en ID - 10_4064_cm_72_2_215_222 ER -
Hermann Render. Topological algebras with an orthogonal total sequence. Colloquium Mathematicum, Tome 72 (1997) no. 2, pp. 215-222. doi: 10.4064/cm-72-2-215-222
Cité par Sources :