On some singular integral operatorsclose to the Hilbert transform
Colloquium Mathematicum, Tome 72 (1997) no. 1, pp. 9-17.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let m: ℝ → ℝ be a function of bounded variation. We prove the $L^p(ℝ)$-boundedness, 1 p ∞, of the one-dimensional integral operator defined by $T_m f(x) = p.v. \int k(x-y) m(x+y) f(y)dy$ where $k(x) = \sum_{j ∈ ℤ} 2^j φ _j (2^j x)$ for a family of functions ${φ_j}_{j∈ℤ}$ satisfying conditions (1.1)-(1.3) given below.
DOI : 10.4064/cm-72-1-9-17

T. Godoy 1 ; L. Saal 1 ; M. Urciuolo 1

1
@article{10_4064_cm_72_1_9_17,
     author = {T. Godoy and L. Saal and M. Urciuolo},
     title = {On some singular integral operatorsclose to the {Hilbert} transform},
     journal = {Colloquium Mathematicum},
     pages = {9--17},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1997},
     doi = {10.4064/cm-72-1-9-17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-72-1-9-17/}
}
TY  - JOUR
AU  - T. Godoy
AU  - L. Saal
AU  - M. Urciuolo
TI  - On some singular integral operatorsclose to the Hilbert transform
JO  - Colloquium Mathematicum
PY  - 1997
SP  - 9
EP  - 17
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-72-1-9-17/
DO  - 10.4064/cm-72-1-9-17
LA  - en
ID  - 10_4064_cm_72_1_9_17
ER  - 
%0 Journal Article
%A T. Godoy
%A L. Saal
%A M. Urciuolo
%T On some singular integral operatorsclose to the Hilbert transform
%J Colloquium Mathematicum
%D 1997
%P 9-17
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-72-1-9-17/
%R 10.4064/cm-72-1-9-17
%G en
%F 10_4064_cm_72_1_9_17
T. Godoy; L. Saal; M. Urciuolo. On some singular integral operatorsclose to the Hilbert transform. Colloquium Mathematicum, Tome 72 (1997) no. 1, pp. 9-17. doi : 10.4064/cm-72-1-9-17. http://geodesic.mathdoc.fr/articles/10.4064/cm-72-1-9-17/

Cité par Sources :