On some singular integral operatorsclose to the Hilbert transform
Colloquium Mathematicum, Tome 72 (1997) no. 1, pp. 9-17
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let m: ℝ → ℝ be a function of bounded variation. We prove the $L^p(ℝ)$-boundedness, 1 p ∞, of the one-dimensional integral operator defined by $T_m f(x) = p.v. \int k(x-y) m(x+y) f(y)dy$ where $k(x) = \sum_{j ∈ ℤ} 2^j φ _j (2^j x)$ for a family of functions ${φ_j}_{j∈ℤ}$ satisfying conditions (1.1)-(1.3) given below.
Affiliations des auteurs :
T. Godoy 1 ; L. Saal 1 ; M. Urciuolo 1
@article{10_4064_cm_72_1_9_17,
author = {T. Godoy and L. Saal and M. Urciuolo},
title = {On some singular integral operatorsclose to the {Hilbert} transform},
journal = {Colloquium Mathematicum},
pages = {9--17},
year = {1997},
volume = {72},
number = {1},
doi = {10.4064/cm-72-1-9-17},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-72-1-9-17/}
}
TY - JOUR AU - T. Godoy AU - L. Saal AU - M. Urciuolo TI - On some singular integral operatorsclose to the Hilbert transform JO - Colloquium Mathematicum PY - 1997 SP - 9 EP - 17 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-72-1-9-17/ DO - 10.4064/cm-72-1-9-17 LA - en ID - 10_4064_cm_72_1_9_17 ER -
T. Godoy; L. Saal; M. Urciuolo. On some singular integral operatorsclose to the Hilbert transform. Colloquium Mathematicum, Tome 72 (1997) no. 1, pp. 9-17. doi: 10.4064/cm-72-1-9-17
Cité par Sources :