The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz
Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 335-338.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main result of this paper is a description of totally commutative idempotent groupoids. In particular, we show that if an idempotent groupoid (G,·) has precisely m ≥ 2 distinct essentially binary polynomials and they are all commutative, then G contains a subgroupoid isomorphic to the groupoid $N_m$ described below. In [2], this fact was proved for m = 2.
DOI : 10.4064/cm-71-2-335-338

J. Dudek 1

1
@article{10_4064_cm_71_2_335_338,
     author = {J. Dudek},
     title = {The minimal extension of sequences {III.} {On} problem 16 of {Gr\"atzer} and {Kisielewicz}},
     journal = {Colloquium Mathematicum},
     pages = {335--338},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-71-2-335-338},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/}
}
TY  - JOUR
AU  - J. Dudek
TI  - The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 335
EP  - 338
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/
DO  - 10.4064/cm-71-2-335-338
LA  - de
ID  - 10_4064_cm_71_2_335_338
ER  - 
%0 Journal Article
%A J. Dudek
%T The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz
%J Colloquium Mathematicum
%D 1996
%P 335-338
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/
%R 10.4064/cm-71-2-335-338
%G de
%F 10_4064_cm_71_2_335_338
J. Dudek. The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz. Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 335-338. doi : 10.4064/cm-71-2-335-338. http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/

Cité par Sources :