The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz
Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 335-338
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result of this paper is a description of totally commutative idempotent groupoids. In particular, we show that if an idempotent groupoid (G,·) has precisely m ≥ 2 distinct essentially binary polynomials and they are all commutative, then G contains a subgroupoid isomorphic to the groupoid $N_m$ described below. In [2], this fact was proved for m = 2.
@article{10_4064_cm_71_2_335_338,
author = {J. Dudek},
title = {The minimal extension of sequences {III.} {On} problem 16 of {Gr\"atzer} and {Kisielewicz}},
journal = {Colloquium Mathematicum},
pages = {335--338},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {1996},
doi = {10.4064/cm-71-2-335-338},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/}
}
TY - JOUR AU - J. Dudek TI - The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz JO - Colloquium Mathematicum PY - 1996 SP - 335 EP - 338 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/ DO - 10.4064/cm-71-2-335-338 LA - de ID - 10_4064_cm_71_2_335_338 ER -
%0 Journal Article %A J. Dudek %T The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz %J Colloquium Mathematicum %D 1996 %P 335-338 %V 71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-335-338/ %R 10.4064/cm-71-2-335-338 %G de %F 10_4064_cm_71_2_335_338
J. Dudek. The minimal extension of sequences III. On problem 16 of Grätzer and Kisielewicz. Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 335-338. doi: 10.4064/cm-71-2-335-338
Cité par Sources :