Spectra for Gelfand pairs associated with the Heisenberg group
Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 305-328
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group $H_n$. We say that $(K,H_n)$ is a Gelfand pair when the set $L^1_K(H_n)$ of integrable K-invariant functions on $H_n$ is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for $L^1_K(H_n)$ can be identified with the set $Δ(K,H_n)$ of bounded K-spherical functions on $H_n$. In this paper, we study the natural topology on $Δ(K,H_n)$ given by uniform convergence on compact subsets in $H_n$. We show that $Δ(K,H_n)$ is a complete metric space and that the 'type 1' K-spherical functions are dense in $Δ(K,H_n)$. Our main result shows that one can embed $Δ(K,H_n)$ quite explicitly in a Euclidean space by mapping a spherical function to its eigenvalues with respect to a certain finite set of ($K ⋉ H_n$)-invariant differential operators on $H_n$. This viewpoint on the spectrum for $Δ(K,H_n)$ was previously known for K=U(n) and is referred to as 'the Heisenberg fan'.
Affiliations des auteurs :
Chal Benson 1 ; Joe Jenkins 1 ; Gail Ratcliff 1 ; Tefera Worku 1
@article{10_4064_cm_71_2_305_328,
author = {Chal Benson and Joe Jenkins and Gail Ratcliff and Tefera Worku},
title = {Spectra for {Gelfand} pairs associated with the {Heisenberg} group},
journal = {Colloquium Mathematicum},
pages = {305--328},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {1996},
doi = {10.4064/cm-71-2-305-328},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/}
}
TY - JOUR AU - Chal Benson AU - Joe Jenkins AU - Gail Ratcliff AU - Tefera Worku TI - Spectra for Gelfand pairs associated with the Heisenberg group JO - Colloquium Mathematicum PY - 1996 SP - 305 EP - 328 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/ DO - 10.4064/cm-71-2-305-328 LA - en ID - 10_4064_cm_71_2_305_328 ER -
%0 Journal Article %A Chal Benson %A Joe Jenkins %A Gail Ratcliff %A Tefera Worku %T Spectra for Gelfand pairs associated with the Heisenberg group %J Colloquium Mathematicum %D 1996 %P 305-328 %V 71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/ %R 10.4064/cm-71-2-305-328 %G en %F 10_4064_cm_71_2_305_328
Chal Benson; Joe Jenkins; Gail Ratcliff; Tefera Worku. Spectra for Gelfand pairs associated with the Heisenberg group. Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 305-328. doi: 10.4064/cm-71-2-305-328
Cité par Sources :