Spectra for Gelfand pairs associated with the Heisenberg group
Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 305-328.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group $H_n$. We say that $(K,H_n)$ is a Gelfand pair when the set $L^1_K(H_n)$ of integrable K-invariant functions on $H_n$ is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for $L^1_K(H_n)$ can be identified with the set $Δ(K,H_n)$ of bounded K-spherical functions on $H_n$. In this paper, we study the natural topology on $Δ(K,H_n)$ given by uniform convergence on compact subsets in $H_n$. We show that $Δ(K,H_n)$ is a complete metric space and that the 'type 1' K-spherical functions are dense in $Δ(K,H_n)$. Our main result shows that one can embed $Δ(K,H_n)$ quite explicitly in a Euclidean space by mapping a spherical function to its eigenvalues with respect to a certain finite set of ($K ⋉ H_n$)-invariant differential operators on $H_n$. This viewpoint on the spectrum for $Δ(K,H_n)$ was previously known for K=U(n) and is referred to as 'the Heisenberg fan'.
DOI : 10.4064/cm-71-2-305-328

Chal Benson 1 ; Joe Jenkins 1 ; Gail Ratcliff 1 ; Tefera Worku 1

1
@article{10_4064_cm_71_2_305_328,
     author = {Chal Benson and Joe Jenkins and Gail Ratcliff and Tefera Worku},
     title = {Spectra for {Gelfand} pairs associated with the {Heisenberg} group},
     journal = {Colloquium Mathematicum},
     pages = {305--328},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-71-2-305-328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/}
}
TY  - JOUR
AU  - Chal Benson
AU  - Joe Jenkins
AU  - Gail Ratcliff
AU  - Tefera Worku
TI  - Spectra for Gelfand pairs associated with the Heisenberg group
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 305
EP  - 328
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/
DO  - 10.4064/cm-71-2-305-328
LA  - en
ID  - 10_4064_cm_71_2_305_328
ER  - 
%0 Journal Article
%A Chal Benson
%A Joe Jenkins
%A Gail Ratcliff
%A Tefera Worku
%T Spectra for Gelfand pairs associated with the Heisenberg group
%J Colloquium Mathematicum
%D 1996
%P 305-328
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/
%R 10.4064/cm-71-2-305-328
%G en
%F 10_4064_cm_71_2_305_328
Chal Benson; Joe Jenkins; Gail Ratcliff; Tefera Worku. Spectra for Gelfand pairs associated with the Heisenberg group. Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 305-328. doi : 10.4064/cm-71-2-305-328. http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-305-328/

Cité par Sources :