Characterizations of complex space forms by means of geodesic spheres and tubes
Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 253-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a connected complex space form ($M^n$,g,J) with n ≥ 4 can be characterized by the Ricci-semi-symmetry condition $\tilde{R}_{XY}·\tilde{ϱ}=0$ and by the semi-parallel condition $\tilde{R}_{XY}·σ=0$, considering special choices of tangent vectors $X,Y$ to small geodesic spheres or geodesic tubes (that is, tubes about geodesics), where $\tilde{R}$, $\tilde{ϱ}$ and $σ$ denote the Riemann curvature tensor, the corresponding Ricci tensor of type (0,2) and the second fundamental form of the spheres or tubes and where $\tilde{R}_{XY}$ acts as a derivation.
DOI : 10.4064/cm-71-2-253-262

J. Gillard 1

1
@article{10_4064_cm_71_2_253_262,
     author = {J. Gillard},
     title = {Characterizations of complex space forms by means of geodesic spheres and tubes},
     journal = {Colloquium Mathematicum},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-71-2-253-262},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-253-262/}
}
TY  - JOUR
AU  - J. Gillard
TI  - Characterizations of complex space forms by means of geodesic spheres and tubes
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 253
EP  - 262
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-253-262/
DO  - 10.4064/cm-71-2-253-262
LA  - en
ID  - 10_4064_cm_71_2_253_262
ER  - 
%0 Journal Article
%A J. Gillard
%T Characterizations of complex space forms by means of geodesic spheres and tubes
%J Colloquium Mathematicum
%D 1996
%P 253-262
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-253-262/
%R 10.4064/cm-71-2-253-262
%G en
%F 10_4064_cm_71_2_253_262
J. Gillard. Characterizations of complex space forms by means of geodesic spheres and tubes. Colloquium Mathematicum, Tome 71 (1996) no. 2, pp. 253-262. doi : 10.4064/cm-71-2-253-262. http://geodesic.mathdoc.fr/articles/10.4064/cm-71-2-253-262/

Cité par Sources :