A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$
Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 133-136
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_cm_71_1_133_136,
author = {Huaming Wu and Maohua Le},
title = {A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$},
journal = {Colloquium Mathematicum},
pages = {133--136},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {1996},
doi = {10.4064/cm-71-1-133-136},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-133-136/}
}
TY - JOUR AU - Huaming Wu AU - Maohua Le TI - A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$ JO - Colloquium Mathematicum PY - 1996 SP - 133 EP - 136 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-133-136/ DO - 10.4064/cm-71-1-133-136 LA - fr ID - 10_4064_cm_71_1_133_136 ER -
%0 Journal Article %A Huaming Wu %A Maohua Le %T A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$ %J Colloquium Mathematicum %D 1996 %P 133-136 %V 71 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-133-136/ %R 10.4064/cm-71-1-133-136 %G fr %F 10_4064_cm_71_1_133_136
Huaming Wu; Maohua Le. A note on the diophantine equation $(x^2-1)(y^2-1)=(z^2-1)^2$. Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 133-136. doi: 10.4064/cm-71-1-133-136
Cité par Sources :